Jurnal Statistika dan Komputasi
https://journal.unugiri.ac.id/index.php/statkom
<p align="justify"><strong><span data-preserver-spaces="true">Jurnal Statistika dan Komputasi (STATKOM) </span></strong><span data-preserver-spaces="true">is an open-access journal (e-journal) published by the Statistics Study Program, Faculty of Science and Technology, Universitas Nahdlatul Ulama Sunan Giri (UNUGIRI). </span><strong><span data-preserver-spaces="true">STATKOM </span></strong><span data-preserver-spaces="true">publishes the article based on research or equivalent to research results in <strong>Applied Statistics and Computation</strong> on various scopes related to </span><strong><span data-preserver-spaces="true">Computational Statistics</span></strong><span data-preserver-spaces="true"> and </span><strong><span data-preserver-spaces="true">Data Analysis</span></strong><span data-preserver-spaces="true">. This journal is published twice a year (June and December) in Indonesian and English. </span></p> <p align="justify"><span data-preserver-spaces="true">Submissions are only accepted through the STATKOM OJS system. Email submissions will not be considered. Letters of Acceptance (LoA) are issued solely as accepted paper notifications and are not provided separately by the Editor.</span></p> <p align="justify"><span data-preserver-spaces="true"><strong><span class="value">Announcements <a href="https://journal.unugiri.ac.id/index.php/statkom/Announcements2"><img src="https://journal.unugiri.ac.id/public/site/images/denny/images---copy.png" alt="" width="30" height="23" /></a></span> <a href="https://journal.unugiri.ac.id/index.php/statkom/Announcements2" target="_blank" rel="noopener"><span class="value">Call for Paper : Vol 5 No 1 (2026)</span></a></strong></span></p> <table border="0" cellspacing="0" cellpadding="2"> <tbody> <tr> <td><strong>Journal Identity</strong></td> <td> </td> </tr> <tr> <td><strong>Journal Title</strong></td> <td><strong>Jurnal Statistika dan Komputasi</strong></td> </tr> <tr> <td><strong>Abbreviation</strong></td> <td><strong>STATKOM</strong></td> </tr> <tr> <td><strong>Country</strong></td> <td><strong>Indonesia</strong></td> </tr> <tr> <td><strong>Subject</strong></td> <td><strong>Computational Statistics, Data Analysis, Statistical Modeling,<br />Machine Learning, Optimization & Simulation, Applied Statistics</strong></td> </tr> <tr> <td><strong>Language</strong></td> <td><strong>Indonesian and English</strong></td> </tr> <tr> <td><strong>ISSN</strong></td> <td><strong><a href="https://issn.perpusnas.go.id/terbit/detail/20221209080629152" target="_blank" rel="noopener">E-ISSN 2963-0398</a> (Online Media) and <a href="https://issn.perpusnas.go.id/terbit/detail/20221209442169809" target="_blank" rel="noopener">ISSN 2963-038X</a> (Printed)</strong></td> </tr> <tr> <td><strong>Frequency</strong></td> <td><strong>Two issues per year (June and December)</strong></td> </tr> <tr> <td><strong>DOI</strong></td> <td><strong><a href="https://doi.org/10.32665/statkom">10.32665/statkom</a></strong></td> </tr> <tr> <td><strong>Editor In Chief</strong></td> <td><strong><a href="https://scholar.google.com/citations?user=SU6XNb8AAAAJ&hl=id" target="_blank" rel="noopener">Denny Nurdiansyah</a></strong></td> </tr> <tr> <td><strong>Publisher</strong></td> <td><a href="https://unugiri.ac.id/" target="_blank" rel="noopener"><strong>Universitas Nahdlatul Ulama Sunan Giri</strong></a></td> </tr> <tr> <td><strong>Faculty</strong></td> <td><a href="https://fst.unugiri.ac.id/" target="_blank" rel="noopener"><strong>Faculty of Science and Technology</strong></a></td> </tr> <tr> <td><strong>Organizer</strong></td> <td><a href="https://statistika.unugiri.ac.id/" target="_blank" rel="noopener"><strong>Statistics Study Program</strong></a></td> </tr> <tr> <td><strong>Address</strong></td> <td><strong>Jl. A. Yani No. 10, Bojonegoro, East Java, Indonesia, 62115</strong></td> </tr> <tr> <td><strong>Phone</strong></td> <td><strong>+6281336633121</strong></td> </tr> <tr> <td><strong>Email</strong></td> <td><strong><a href="mailto:statkom@unugiri.ac.id">statkom@unugiri.ac.id</a> </strong></td> </tr> </tbody> </table> <h4>Jurnal Statistika dan Komputasi (STATKOM) Indexed and Abstracted by:</h4> <table> <tbody> <tr> <td><a title="google-scholar" href="https://scholar.google.com/citations?user=ErGP6zUAAAAJ&hl=id" target="_blank" rel="noopener"><img src="http://journal.unugiri.ac.id/public/site/images/fathonisme/Google_150x64.png" data-pagespeed-url-hash="673504727" /></a></td> <td><a title="crossref" href="https://search.crossref.org/?q=Jurnal+Statistika+dan+Komputasi+%28STATKOM%29&from_ui=yes" target="_blank" rel="noopener"><img src="http://journal.unugiri.ac.id/public/site/images/fathonisme/Crossref150x64.png" data-pagespeed-url-hash="1069467680" /></a></td> <td><a title="issn" href="https://portal.issn.org/api/search?search[]=MUST=default=statkom&search_id=24528400" target="_blank" rel="noopener"><img src="http://journal.unugiri.ac.id/public/site/images/fathonisme/issn-cf2fe0a20839dbc4cf95fa492eb42bdd.png" data-pagespeed-url-hash="3822290635" /></a></td> <td><a title="garuda" href="https://garuda.kemdiktisaintek.go.id/journal/view/29743" target="_blank" rel="noopener"><img src="http://journal.unugiri.ac.id/public/site/images/fathonisme/garuda1-35e808e8adf2d7251cd0979fd25a384b.png" data-pagespeed-url-hash="2833496628" /></a></td> </tr> <tr> <td><a title="drji" href="http://olddrji.lbp.world/JournalProfile.aspx?jid=2963-0398" target="_blank" rel="noopener"><img src="http://journal.unugiri.ac.id/public/site/images/fathonisme/150x64.png" data-pagespeed-url-hash="1006014317" /></a></td> <td><a title="scilit" href="https://www.scilit.com/sources/130810" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/denny/scilit-d0f6fc7483b997fde3f30848d7c02b7a.png" alt="" width="145" height="56" data-pagespeed-url-hash="828691071" /></a></td> <td><a title="orcidid" href="https://orcid.org/0009-0003-0385-5514" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/denny/orcidid-70c216cfd134ec44b176a83bcf85d778.png" alt="" width="150" height="48" data-pagespeed-url-hash="1418612843" /></a></td> <td><a title="europub" href="https://europub.co.uk/journals/30536" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/fathonisme/logo-europub.png" alt="" width="197" height="50" data-pagespeed-url-hash="2687478321" /></a></td> </tr> <tr> <td><a title="base" href="https://www.base-search.net/Search/Results?lookfor=jurnal+statistika+dan+komputasi&name=&oaboost=1&newsearch=1&refid=dcbasen" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/denny/base-logo-kl.png" alt="" width="145" height="56" data-pagespeed-url-hash="828691071" /></a></td> <td><a title="asci" href="https://ascidatabase.com/masterjournallist.php?v=17588" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/denny/1000131101.png" width="150" height="59" data-pagespeed-url-hash="1006014317" /></a></td> <td><a title="sherparomeo" href="https://v2.sherpa.ac.uk/id/publication/43894" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/denny/download.png" alt="" width="197" height="50" data-pagespeed-url-hash="2142002356" /></a></td> <td><a title="dimensions" href="https://app.dimensions.ai/discover/publication?search_mode=content&and_facet_source_title=jour.1451608" target="_blank" rel="noopener"><img src="https://journal.unugiri.ac.id/public/site/images/denny/dimension.png" alt="" width="203" height="46" data-pagespeed-url-hash="2336091454" /></a></td> </tr> <tr> <td><a title="onesearchind" href="https://onesearch.id/Repositories/Repository?library_id=6172" target="_blank" rel="noopener"><img src="http://journal.unugiri.ac.id/public/site/images/fathonisme/logo-onesearch-icon-03784fd47b7731edad646518f35482a0.png" alt="" width="145" height="56" data-pagespeed-url-hash="828691071" /></a></td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> <p> </p>Universitas Nahdlatul Ulama Sunan Girien-USJurnal Statistika dan Komputasi2963-038X<p>Authors who publish with this journal agree to the following terms:</p> <ol> <li>Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.</li> <li>Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.</li> <li>Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.</li> </ol> <p> USER RIGHTS</p> <p> All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows:</p> <ul> <li><a title="Copyright" href="https://creativecommons.org/licenses/by-sa/4.0" target="_blank" rel="noopener">Creative Commons Attribution-Share alike (CC BY-SA)</a></li> </ul>Analisis Sentimen Ulasan Pengguna BRImo Terhadap Pembaruan Fitur Aplikasi Menggunakan Naive Bayes Dengan Seleksi Fitur Chi-Square
https://journal.unugiri.ac.id/index.php/statkom/article/view/5194
<p><strong><em>Background: </em></strong><em>The BRImo app is a mobile banking service from Bank Rakyat Indonesia (BRI) with a large number of users. User reviews on Google Play Store are an important source of data for understanding user perceptions and satisfaction levels, but the number and diversity of review texts require an appropriate sentiment analysis method.</em></p> <p><strong><em>Objective: </em></strong><em>This study aims to evaluate the performance of the Naive Bayes algorithm in classifying BRImo reviews by sentiment and the effect of Chi-Square feature selection.</em></p> <p><strong><em>Methods: </em></strong><em>The research method includes text data preprocessing consisting of cleaning, case folding, tokenizing, normalization, filtering, and stemming. Next, feature weighting is performed using TF-IDF and feature selection using the Chi-Square method, followed by sentiment classification using the Naive Bayes algorithm. Model evaluation is performed using a confusion matrix with accuracy, precision, recall, and F1-score metrics.</em></p> <p><strong><em>Results: </em></strong><em>The results show that the sentiment classification model achieved an accuracy of 95%, precision of 98%, recall of 96%, and an F1-score of 97%. The high recall value indicates the model's excellent ability to detect positive sentiment in user reviews.</em></p> <p><strong><em>Conclusion: </em></strong><em>The Naive Bayes algorithm with Chi-Square feature selection is effective in analyzing BRImo application review sentiment and can be used as a basis for evaluating application development, but its performance is still limited in detecting negative sentiment due to the quantity of sentiment data.</em></p>Heppy Nur Asavia GinasputriAtika Dwi SaputriSiti Nurasriyanti WahidAriska Fitriyana NingrumM Al Haris
Copyright (c) 2025 Heppy Nur Asavia Ginasputri, Atika Dwi Saputri, Siti Nurasriyanti Wahid, Ariska Fitriyana Ningrum, M Al Haris
https://creativecommons.org/licenses/by-sa/4.0
2025-12-312025-12-3142566710.32665/statkom.v4i2.5194Pengelompokan Kabupaten/Kota Di Jawa Barat Berdasarkan Indikator Ketenagakerjaan Menggunakan Metode K-Means Dan Fuzzy C-Means Dengan Evaluasi Rasio SW/SB Sebagai Validasi Klaster
https://journal.unugiri.ac.id/index.php/statkom/article/view/5196
<p><strong><em>Background: </em></strong><em>The high dynamics of the labor market in Indonesia make employment one of the main challenges of sustainable development. Changes in economic structure, an increase in the workforce, and regional disparities in employment opportunities require adaptive strategies. This condition is particularly evident in densely populated areas with diverse economic sectors, such as West Java Province.</em></p> <p><strong><em>Objective: </em></strong><em>This study aims to group 27 districts/cities in West Java Province based on five employment indicators, namely TPAK, TPT, the number of workers in micro and small businesses, the average monthly net income of informal workers according to education, and the percentage of employment in the workforce by comparing the K-Means and Fuzzy C-Means methods.</em></p> <p><strong><em>Methods: </em></strong><em>This study uses two clustering methods, namely K-Means and Fuzzy C-Means. The best method is selected by comparing the SW and SB values.</em></p> <p><strong><em>Results: </em></strong><em>The results indicate that the K-Means method is the best method, as seen from the smaller Sw/Sb ratio of 0.076, compared to Fuzzy C-Means, which is 0.153.</em></p> <p><strong><em>Conclusion: </em></strong><em>The results of the K-Means method clustering show that the districts/cities in West Java are divided into 7 clusters, namely cluster 1 with 3 regions, cluster 2 with 8 regions, clusters 3 and 4 with 1 region, cluster 5 with 4 regions, cluster 6 with 3 regions, and cluster 7 with 7 regions. These results can serve as a basis for determining the priority of regional employment interventions.</em></p>Revika Inta Nur KholifahAlbertus Dion SarahFirochul MasichahM Al Haris
Copyright (c) 2025 Revika Inta Nur Kholifah, Albertus Dion Sarah, Firochul Masichah, M Al Haris
https://creativecommons.org/licenses/by-sa/4.0
2025-12-312025-12-3142688210.32665/statkom.v4i2.5196Analisis Regresi Kuantil Dengan Pendekatan Bootstrap Pada World Happiness Report 2024
https://journal.unugiri.ac.id/index.php/statkom/article/view/5632
<p><strong><em>Background: </em></strong><em>Happiness is a key indicator of national well-being. The World Happiness Report measures it through economic and social factors. Linear regression (OLS) is often applied but is sensitive to outliers. Quantile regression is more robust, and bootstrapping enhances estimate stability.</em></p> <p><strong><em>Objective:</em></strong> <em>This study aims to analyze the influence of these factors on happiness scores using quantile regression, which is able to provide a comprehensive picture of the influence of variables at various distribution positions, especially when there are outliers and violations of classical linear regression assumptions.</em></p> <p><strong><em>Methods:</em></strong> <em>Quantile regression was applied at quantiles 0.25 to 0.75, and the best model was obtained at quantile 0.4 with a pseudo-R² value of 0.6388. To improve the reliability of parameter estimates, a bootstrap approach with 1000 resampling times was used, which provided more stable confidence intervals and standard deviation estimates.</em></p> <p><strong><em>Results:</em></strong> <em>The results show that social support, healthy life expectancy and freedom of choice are variables that significantly affect the level of happiness in the 0.4 quantile. Meanwhile, GDP per capita, generosity, and perception of corruption are not statistically significant in this model.</em></p> <p><strong><em>Conclusion:</em></strong> <em>This study recommends the use of quantile regression with bootstrapping as a robust approach for socioeconomic data analysis, especially in the context of distributions that are not symmetric and contain outliers. The findings also provide policy implications.</em></p>Rafif Naufal OktiardiAkmal NufusMuhammad Wildan RamadhanMuhammad Ghaffiqi Uwes QorneyIlham Faishal Mahdy
Copyright (c) 2025 Rafif Naufal Oktiardi, Akmal Nufus, Muhammad Wildan Ramadhan, Muhammad Ghaffiqi Uwes Qorney, Ilham Faishal Mahdy
https://creativecommons.org/licenses/by-sa/4.0
2025-12-312025-12-3142839310.32665/statkom.v4i2.5632Peramalan Harga Beras Mingguan di Kalimantan Timur Menggunakan Metode Singular Spectrum Analysis
https://journal.unugiri.ac.id/index.php/statkom/article/view/5662
<p><strong><em>Background: </em></strong><em>Rice plays a central role in Indonesia's food security and inflation dynamics, making accurate price forecasts crucial for effective planning policies. In East Kalimantan, weekly rice prices represent a significant risk factor that needs to be closely monitored to anticipate potential risks to household welfare and regional inflation.</em></p> <p><strong><em>Objective: </em></strong><em>To predict rice prices in East Kalimantan over the next eight periods using the SSA method.</em></p> <p><strong><em>Methods: </em></strong><em>Singular Spectrum Analysis (SSA) to predict weekly rice prices. The SSA procedure includes embedding (window length L = 48), singular value decomposition, eigentriple clustering (trend: 1–2; seasonality: 3–35; disturbance: 36–48), diagonal averaging, and R-forecasting using the Linear Recursive Formula (LRF).</em></p> <p><strong><em>Results: </em></strong><em>MAPE of 0.084% (in-sample) and 3.299% (out-sample). Estimates indicate that rice prices will remain in the range of IDR 15,500–16,500/kg during August–October 2025.</em></p> <p><strong><em>Conclusion: </em></strong><em>The SSA is effective in capturing basic price components and producing reliable forecasts to support food reserve maintenance, distribution strategies, and inflation risk mitigation.</em></p>Deswita IstiyantiErlyne Nadhilah WidyaningrumMitha Rabiyatul NufusChandrawati Chandrawati
Copyright (c) 2025 Deswita Istiyanti, Erlyne Nadhilah Widyaningrum, Mitha Rabiyatul Nufus, Chandrawati Chandrawati
https://creativecommons.org/licenses/by-sa/4.0
2025-12-312025-12-31429410510.32665/statkom.v4i2.5662Penerapan Analisis Konjoin Dan Regresi Logistik Pada Preferensi Dan Keputusan Konsumen Mie Gacoan Di Yogyakarta
https://journal.unugiri.ac.id/index.php/statkom/article/view/5779
<p><strong><em>Background: </em></strong><em>The rapid expansion of Mie Gacoan outlets in various cities, including Yogyakarta, reflects strong consumer interest in culinary products that offer diverse flavors and affordable prices. This phenomenon highlights the importance of understanding product attributes that influence consumer preferences and purchasing decisions.</em></p> <p><strong><em>Objective: </em></strong><em>This study aims to identify the attributes that affect consumer preferences and purchasing decisions for Mie Gacoan in Yogyakarta.</em></p> <p><strong><em>Methods: </em></strong><em>Data were collected from 115 respondents and analyzed using conjoint analysis and logistic regression. Five product attributes were evaluated: spiciness level, price, service, dining area, and type of noodle.</em></p> <p><strong><em>Results: </em></strong><em>The conjoint analysis indicates that spiciness level has the highest importance value (36.670%), followed by service (28.381%), type of noodle (12.132%), price (11.912%), and dining area (10.906%). Logistic regression analysis shows that spiciness level and price have a significant effect on purchasing decisions, with coefficients of 0.432 and 0.727 and odds ratios of 1.541 and 2.068, respectively.</em></p> <p><strong><em>Conclusion: </em></strong><em>Overall, the findings demonstrate that spiciness level and price are the most influential attributes in actual purchasing decisions, even though other attributes also shape consumer preferences.</em></p>Nurhikmah NurhikmahEpha Diana Supandi
Copyright (c) 2025 Nurhikmah Nurhikmah, Epha Diana Supandi
https://creativecommons.org/licenses/by-sa/4.0
2025-12-312025-12-314210611710.32665/statkom.v4i2.5779