Peramalan Jumlah Barang Kereta Api di Indonesia Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA)

Abstract View: 47, PDF Download: 34 SIMILARITY INDEX Download: 0

Authors

  • Idrus Syahzaqi Universitas Airlangga
  • Sediono Sediono Universitas Airlangga
  • Sabrina Salsa Oktavia Universitas Airlangga
  • Aurellia Calista Anggakusuma Universitas Airlangga
  • Ezha Easyfa Wieldyanisa Universitas Airlangga

DOI:

https://doi.org/10.32665/statkom.v4i1.4424

Keywords:

Goods Transportation, Time Series, SARIMA, MAPE

Abstract

Background: Freight transportation is an important part of the business run by PT Kereta Api Indonesia. To support effective strategic planning and infrastructure development, an accurate prediction of the amount of goods to be transported in the future is required. Therefore, historical data-based forecasting methods such as Seasonal Autoregressive Interated Moving Average (SARIMA) can be a relevant approach to predict the number of railway goods in Indonesia.

Objective: Obtain a suitable model to forecast the number of goods transported by rail transportation in Indonesia, and to determine the results of the forecasting.

Methods: This research uses the time series method with the Seasonal Autoregressive Integrated Moving Averang (SARIMA) model approach based on data characteristics that show seasonal patterns. SARIMA itself is able to integrate seasonal pattern components in the data and is able to effectively capture periodic and structural dynamics in seasonal data.

Results: The best model obtained is probabilistic SARIMA(0,1,1)(0,1,1)12, using secondary data sourced from the Central Bureau of Statistics (BPS) in the range of January 2013 to March 2024. Forecasting for the next 12 months (April 2023 to March 2024) shows a Mean Absolute Percentage Error (MAPE) value of 8.03% which indicates that the level of forecasting accuracy is very good.

Conclusion: The probabilistic ARIMA(0,1,1)(0,1,1)12 model can be used as a reliable reference in predicting the amount of goods transported through rail transportation in Indonesia.

References

Abebe, T. H. (2020). Time Series Analysis of Monthly Average Temperature and Rainfall Using Seasonal ARIMA Model ( in Case of Ambo. International Journal of Theoretical and Applied Mathematics, 6(5), 76–87. https://doi.org/10.11648/j.ijtam.20200605.13

Fitriani, I., Arum P.R., & Amri, S. (2024). Pemodelan Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Meramalkan Volume Angkutan Barang Kereta Api di Pulau Jawa Tahun 2021: Memberikan prediksi volume angkutan barang kereta api di pulau jawa untuk masa mendatang. Journal Of Data Insights, 2(1), 26–35. https://doi.org/10.26714/jodi.v2i1.167

Astuti, S. W., & Jamaludin. (2018). Forecasting Surabaya - Jakarta Train Passengers with SARIMA model. IOP Conference Series: Materials Science and Engineering, 407(1). https://doi.org/10.1088/1757-899X/407/1/012105

Brata, A. S., Anhar, A., Lestari, W., Trisanti, Y., & Nisa, F. (2022). Metode Fuzzy Time Series Logika Ruey Chyn Tsaur untuk Prediksi Pola Data Trend Naik: Studi Kasus Pengiriman Jumlah Berat Barang dengan Transportasi Kereta Api Pulau Jawa Satuan Ribu Ton Tahun 2020 - 2022. Journal of Mathematics Education and Science, 6(1), 29–35. https://doi.org/10.32665/james.v6i1.887

Cania, S., Putri, D. M., & Rianjaya, I. D. (2023). Penerapan Model Seasonal Autoregressive Integrated Moving Average (SARIMA) pada Jumlah Penumpang Kereta Api di Sumatera Barat. JOSTECH: Journal of Science and Technology, 3(2), 209–220. https://doi.org/10.15548/jostech.v3i2.6880

Feng, F., Li, W., & Jiang, Q. (2018). Railway freight volume forecast using an ensemble model with optimised deep belief network. IET Intelligent Transport Systems, 12(8), 851–859. https://doi.org/10.1049/iet-its.2017.0369

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd editon). OTexts: Melbourne. https://otexts.com/fpp3/

Ardiansah, I., Adiarsa, I. F., Putri, S. H., & Pujianto, T. (2021). Penerapan Analisis Runtun Waktu pada Peramalan Penjualan Produk Organik menggunakan Metode Moving Average dan Exponential Smoothing. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 10(4), 548. https://doi.org/10.23960/jtep-l.v10i4.548-559

Khoiriyah, N. S., Silfiani, M., Novelinda, R., & Rezki, S. M. (2023). Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA. Jurnal Statistika Dan Komputasi, 2(2), 76–82. https://doi.org/10.32665/statkom.v2i2.2303

Leksono, B. E. (2023). Peramalan Volume Angkutan Bahan Bakar Minyak Pt Kereta Api Indonesia (Persero) Daop V Purwokerto Dengan Metode Moving Average. Jurnal Pabean, 5(2), 138–145. https://doi.org/10.61141/pabean.v5i2.421

Memon, M. A., Thurasamy, R., Ting, H., & Cheah, J. H. (2025). Purposive Sampling: a Review and Guidelines for Quantitative Research. Journal of Applied Structural Equation Modeling, 9(1), 1–23. https://doi.org/10.47263/JASEM.9(1)01

Nashrullah, M., Maharani, O., Rohman, A., Fahyuni, E. F., Nurdyansyah, & Untari, R. S. (2023). Metodologi Penelitian Pendidikan Prosedur Penelitian, Subyek Penelitian, dan Pengembangan Teknik Pengumpulan Data. UMSIDA Press. https://press.umsida.ac.id/index.php/umsidapress/article/download/978-623-464-071-7/1117

Ratnaningsih, D. J., & Adam, F. F. (2024). Model Comparison of Vector Autoregressive Reshaped and Sarima in Seasonal Data (a Case Study of Tea Production in Pt Perkebunan Nusantara Viii Indonesia). Media Statistika, 16(2), 215–226. https://doi.org/10.14710/medstat.16.2.215-226

Rizal, M., & Sri Utami Zuliana. (2023). Forecasting Using Sarima And Bayesian Structural Time Series Method For Range Seasonal Time. Proceedings of The International Conference on Data Science and Official Statistics, 2023(1), 382–391. https://doi.org/10.34123/icdsos.v2023i1.402

Sartono. (2016). Pemodelan untuk Pengiriman Barang dengan Memanfaatkan Jasa Kereta Api di Jawa dan Sumatera. Konferensi Nasional Penelitian Matematika Dan Pembelajarannya (KNMP I), Knpmp I, 790–799. https://proceedings.ums.ac.id/knpmp/article/view/2569

Suryadi, S. (2019). Kinerja dan Peramalan Pertumbuhan Angkutan Kereta Api Menggunakan Model SARIMA. Warta Penelitian Perhubungan, 26(7), 381–392. https://doi.org/10.25104/warlit.v26i7.922%0A

Susilawati, R., & Sunendiari, S. (2022). Peramalan Jumlah Penumpang Kereta Api Menggunakan Metode Arima dan Grey System Theory. Jurnal Riset Statistika, 2(1), 1–12. https://doi.org/10.29313/jrs.vi.603

Downloads

Additional Files

Published

2025-06-30

How to Cite

Syahzaqi, I., Sediono, S., Oktavia, S. S., Anggakusuma, A. C., & Wieldyanisa, E. E. (2025). Peramalan Jumlah Barang Kereta Api di Indonesia Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Jurnal Statistika Dan Komputasi, 4(1), 13–22. https://doi.org/10.32665/statkom.v4i1.4424
Abstract View: 47, PDF Download: 34 SIMILARITY INDEX Download: 0