Clustering Job Seekers in Bojonegoro Using K-Means and Fuzzy K-Means

Abstract View: 0, PDF Download: 0 SIMILARITY INDEX Download: 0

Authors

  • Adam Al Avin Faisal Hutin Universitas Nahdlatul Ulama Sunan Giri

DOI:

https://doi.org/10.32665/statkom.v4i1.4651

Keywords:

Job Seekers, Clustering, K-Means, Fuzzy K-Means, Workforce Age

Abstract

Background: Job seekers are part of the labor force who are unemployed and actively looking for work. One of the efforts to address the rising number of job seekers is by expanding job openings or employment opportunities. Employment is an essential need for individuals to meet various aspects of life, ranging from basic needs to education and housing.

Objective: This paper aims to analyze the frequency distribution of job seeker attributes in Bojonegoro, compare the K-Means and Fuzzy K-Means methods in clustering sub-districts, determine the best clustering method, and describe frequency distribution for each formed cluster.

Methods: The methods used are K-Means and Fuzzy K-Means, both known for their ease of implementation and effectiveness in clustering large datasets by minimizing the average distance between data points within each cluster.

Results: The majority of job seekers in Bojonegoro in 2022 are aged 15–24, unmarried, and senior high school graduates, with males comprising 59.6% of the total. The clustering analysis, with an optimal k equal to 5, reveals five balanced groups with distinct variations in age, gender, and marital status, suggesting a range of employment needs among subgroups.

Conclusion: The findings indicate that most job seekers in Bojonegoro are young, male, unmarried, and secondary school graduates. The clustering process identified five relatively even groups, with K-Means slightly outperforming Fuzzy K-Means in cluster cohesion.

References

Abdel-Aty, A., Mostafa, M. G., & El-Sherif, M. (2021). Comparative study of hard and fuzzy clustering algorithms in spatial data analysis. International Journal of Advanced Computer Science and Applications, 12(1), 145–152. https://doi.org/10.14569/IJACSA.2021.0120118

Alkodri, A. A., Sujono, S., Isnanto, B., & Maxrizal, M. (2020). Peningkatan Bidang Pendidikan Dan Pelatihan Keterampilan Bagi Pencari Kerja Dengan Basic Graphic Design. Jurnal Abdimastek (Pengabdian Masyarakat Berbasis Teknologi), 1(2). https://doi.org/10.32736/abdimastek.v1i2.1026

Almeida, J. A., de Azevedo, F. M., & Neto, P. A. (2021). Performance analysis of K-Means clustering with categorical data transformation techniques. Expert Systems with Applications, 173, 114669. https://doi.org/10.1016/j.eswa.2021.114669

Angela, A., & Honni, H. (2018). Prototipe Aplikasi Mobile Android YourDreamJS untuk Pelamar dan Pencari Kerja. JBASE - Journal of Business and Audit Information Systems, 1(1), 19–29. https://doi.org/10.30813/.v1i1.1141

Arnofia, L. (2022). fasilitas pencari kerja yang dilakukan disperinaker Bojonegoro. blokbojonegoro.com. https://blokbojonegoro.com/2022/06/02/fasilitasi-pencari-kerja-ini-yang-dilakukan-disperinaker-bojonegoro/?m=0

Arora, S., & Malik, S. (2020). Clustering techniques for data analysis: A review. International Journal of Computer Applications, 176(30), 15–19. https://doi.org/10.5120/ijca2020920672

Bezdek, J. C., Keller, J. M., Krishnapuram, R., & Pal, N. R. (2019). Fuzzy models and algorithms for pattern recognition and image processing. Springer. https://link.springer.com/book/10.1007/b106267

Fitriyah, H., Safitri, E. M., Muna, N., Khasanah, M., Aprilia, D. A., & Nurdiansyah, D. (2023). Implementasi Algoritma Clustering Dengan Modifikasi Metode Elbow Untuk Mendukung Strategi Pemerataan Bantuan Sosial Di Kabupaten Bojonegoro. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1598-1607. https://doi.org/10.46306/lb.v4i3.453

Jain, A. K. (2020). Data clustering: 50 years beyond K-Means. Pattern Recognition Letters, 138, 489–499. https://doi.org/10.1016/j.patrec.2020.01.008

Kartini, A.Y., Nurdiansyah, D., & Cahyani, N. (2024). Metode Statistika. Madza Media.

Khan, A. S. S., Fatekurohman, M., & Dewi, Y. S. (2023). Perbandingan Algoritma K-Medoids Dan K-Means Dalam Pengelompokan Kecamatan Berdasarkan Produksi Padi Dan Palawija Di Jember. Jurnal Statistika Dan Komputasi, 2(2), 67–75. https://doi.org/10.32665/statkom.v2i2.2301

Kuncoro, J. (2022). Tahun 2022 tercatat 2.063 warga Bojonegoro menganggur. Suarabanyuurip.com. https://suarabanyuurip.com/2023/01/27/tahun-2022-tercatat-2063-warga-bojonegoro-menganggur/

Ningsih, W., & Abdullah, F. (2021). Analisis Perbedaan Pencari Kerja dan Lowongan Kerja Sebelum dan Pada Saat Pandemi Covid-19 di Kota Malang. Journal of Regional Economics Indonesia, 2(1), 42–56. https://doi.org/10.26905/jrei.v2i1.6181

Nurdiansyah, D., Hayati, E., Purnamasari, I., Hidayanti, A. A., & Rahayu, Y. F. (2024). Implementation of Clustering and Association for Early Warning of Disasters in Bojonegoro Regency. ComTech: Computer, Mathematics and Engineering Applications, 15(2), 119–127. https://doi.org/10.21512/comtech.v15i2.11933

Nurdiansyah, D., Saidah, S., & Cahyani, N. (2023). Data Mining Study For Grouping Elementary Schools In Bojonegoro Regency Based On Capacity And Educational Facilities. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 17(2), 1081-1092. https://doi.org/10.30598/barekengvol17iss2pp1081-1092

Nurdiansyah, D., & Sulistiawan, A. (2023). Dasar Pemrograman Komputer Dengan Open Source Software R (Untuk Bidang Sains dan Teknologi). CV. AA. RIZKY.

Rochman, E. M. S., & Rachmad, A. (2020). Clustering Tourist Destinations Based on Number of Visitors Using the K-Mean Method. Proceedings of the 1st International Multidisciplinary Conference on Education, Technology, and Engineering (IMCETE 2019), 312–314. https://doi.org/10.2991/assehr.k.200303.075

Sallaby, A. F., & Suryana, E. (2018). Penerapan Data Mining untuk Menentukan Jumlah Pencari Kerja Terdaftar Berdasarkan Umur dan Pendidikan Menggunakan K-Means Clustering (Studi Kasus di Dinas Tenaga Kerja Dan Transmigrasi Provinsi Bengkulu). Journal of Technopreneurship and Information System (JTIS), 1(1), 35–38. https://doi.org/10.36085/jtis.v1i2.28

Salman, G. & Kurniati, P. (2022). Pencari Kerja di Surabaya Kini Lebih Mudah Akses Lowongan Pekerjaan lewat Aplikasi ASSIK. Kompas.com.

Simbolon, T. G. (2023). ADA 937.176 Pencari Kerja Di Indonesia Pada 2022. DataIndonesia.id.

Sukirman, S., Rosmiati, R., Alamsyah, N., & Kamal, K. (2020). Perancangan Sistem Informasi Kartu Kuning (Ak.1) Untuk Pencari Kerja Kantor Dinas Ketenagakerjaan Kota Makassar. ILTEK : Jurnal Teknologi, 14(2), 2067–2072. https://doi.org/10.47398/iltek.v14i2.418

Wang, Y., Li, J., & Gao, H. (2019). A hybrid fuzzy K-means clustering algorithm for data with outliers. Expert Systems with Applications, 124, 291–300. https://doi.org/10.1016/j.eswa.2019.01.016

Xu, C., & Tian, Y. (2019). A comprehensive survey of clustering algorithms. Annals of Data Science, 6(2), 221–252. https://doi.org/10.1007/s40745-018-0149-1

Yuliani, R., Setiawan, A., & Prasetyo, A. (2020). Analysis and design of job information systems for employment services. Jurnal Teknologi dan Sistem Komputer, 8(4), 237–244. https://doi.org/10.14710/jtsiskom.8.4.2020.237-244

Downloads

Additional Files

Published

2025-06-30

How to Cite

Hutin, A. A. A. F. (2025). Clustering Job Seekers in Bojonegoro Using K-Means and Fuzzy K-Means. Jurnal Statistika Dan Komputasi, 4(1), 33–46. https://doi.org/10.32665/statkom.v4i1.4651
Abstract View: 0, PDF Download: 0 SIMILARITY INDEX Download: 0