Prediksi Harga Saham PT.Telekomunikasi Indonesia Menggunakan Metode Transformasi Wavelet Diskrit Daubechies
Abstract View: 148, SIMILARITY INDEX Download: 0 PDF Download: 125DOI:
https://doi.org/10.32665/statkom.v3i1.2981Keywords:
Saham, MAPE, Peramalan, Wavelet, ThresholdingAbstract
Latar Belakang: Wavelet Daubechies merupakan penyempurnaan dari wavelet Haar yang mempunyai keunggulan dibandingkan wavelet lainnya, sehingga wavelet Daubechies jenis ini sering digunakan untuk transformasi wavelet diskrit (TWD). TWD akan menghasilkan sejumlah koefisien yang diproses dalam estimasi ambang batas untuk menghilangkan noise pada data. Pada proses estimasi ambang batas, terdapat jenis fungsi ambang batas dan parameter yang mempengaruhi kelancaran hasil estimasi.
Tujuan: Memperoleh nilai prediksi harga saham PT Telekomunikasi Indonesia pada tanggal 21 September 2020 sampai dengan 27 Februari 2023 dan mengetahui level terbaiknya.
Metode: Transformasi Wavelet Diskrit Daubechies fungsi hard thresholding pemilihan parameter minimax.
Hasil: Nilai prediksi data saham PT.Telekomunikasi Indonesia sangat akurat, mengikuti pola data sebenarnya dengan nilai mean absolute percentage error (MAPE) kurang dari 2% untuk setiap level (1 – 6).
Kesimpulan: Level pertama merupakan level terbaik untuk melakukan prediksi harga saham PT Telekomunikasi Indonesia menggunakan metode Wavelet Daubechies dengan MAPE terkecil sebesar 0,008013.
References
Aswi, & Sukarna. (2006). Analisis Deret Waktu Analisis Deret Waktu. January, 303.
Cazelles, B., Chavez, M., Berteaux, D., Ménard, F., Vik, J. O., Jenouvrier, S., & Stenseth, N. C. (2008). Wavelet analysis of ecological time series. In Oecologia (Vol. 156, Issue 2). https://doi.org/10.1007/s00442-008-0993-2
Donoho, D. L., & Johnstone, I. M. (1994). Ideal Denoising in an orthonormal basis chosen from a library of bases. Comptes Rendus Acad. Sci., Ser. I, 319, 1317–1322.
Kusumaningrum, D. A., Suparti, & Maruddani, D. A. I. (2017). Analisis Data Runtun Waktu Menggunakan Metode Wavelet Thresholding Dengan Maximal Overlap Discrete Transform. Jurnal Gaussian, 6(1), 151–159.
Lestari, V. N., & Subanar. (2015). Transformasi Wavelet Diskret Untuk Data Time Series. Seminar Nasional Matematika Dan Pendidikan Matematika Uny 2015, 163–170.
Mahayana, I. B. B., Mulyadi, I., & Soraya, S. (2022). Peramalan Penjualan Helm dengan Metode ARIMA (Studi Kasus Bagus Store). Inferensi, 5(1). https://doi.org/10.12962/j27213862.v5i1.12469
Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900
Nugroho, K. (2016). Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Infokam, 12(1).
Ogden, R. T., & Vidakovic, B. (2000). Statistical Modeling by Wavelets. Journal of the American Statistical Association, 95(451), 1007. https://doi.org/10.2307/2669487
Ogden, T. (2002). Wavelet Methods for Time Series Analysis. Journal of the American Statistical Association, 97(457), 362–363. https://doi.org/10.1198/jasa.2002.s460
Percival, D. B., Wang, M., & Overland, J. E. (2004). An introduction to wavelet analysis with applications to vegetation time series. Community Ecology, 5(1), 19–30. https://doi.org/10.1556/ComEc.5.2004.1.3
Rahman, A., Abdullah, A. G., & Hakim, D. L. (2012). Prakiraan Beban Puncak Jangka Panjang Pada Sistem Kelistrikan Indonesia Menggunakan Algoritma Adaptive Neuro-Fuzzy Inference System. Electrans, 11(2), 18–26.
Saleh, S., & Tabe, R. (2018). Analysis Of Stock Price At Pt. Telkom Indonesia Tbk Before And After Having Damage On Its Satelit. Tasharruf: Journal Economics and Business of Islam, 3(1), 13–26. https://doi.org/10.30984/tjebi.v3i1.653
Sang, Y. F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. In Atmospheric Research (Vol. 122). https://doi.org/10.1016/j.atmosres.2012.11.003
Suprayogi, M. A. (2022). Model Double Exponential Smoothing Dalam Peramalan Penerimaan Pajak Pemerintah Pusat Indonesia. Jurnal Statistika Dan Komputasi, 1(2), 83–92. https://doi.org/10.32665/statkom.v1i2.1233
Vulandari, R. T., & Parwitasari, T. A. (2018). Perbandingan Model AR(1), ARMA (1,1), dan ARIMA (1,1,1) pada Prediksi Tinggi Muka Air Sungai Bengawan Solo pada Pos Pemantauan Jurug. MUST: Journal of Mathematics Education, Science and Technology, 3(1). https://doi.org/10.30651/must.v3i1.1620
Zhang, B. L., & Dong, Z. Y. (2001). An adaptive neural-wavelet model for short term load forecasting. Electric Power Systems Research, 59(2), 121–129. https://doi.org/10.1016/S0378-7796(01)00138-9
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this Journal agree to the following terms:
- The author retains copyright and grants the Journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allows others to share the work within an acknowledgement of the work’s authorship and initial publication of this Journal.
- Authors can enter into a separate, additional contractual arrangement for the non-exclusive distribution of the Journal’s published version of the work (e.g. acknowledgement of its initial publication in this Journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) before and during the submission process, as it can lead to productive exchanges and earlier and more extraordinary citations of published works.