Implementasi Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Memprediksi Curah Hujan di Kota Semarang

Abstract View: 40, PDF Download: 21 SIMILARITY INDEX Download: 0

Authors

DOI:

https://doi.org/10.32665/statkom.v3i2.3224

Keywords:

Rainfall, Forecasting, MAPE, SARIMA

Abstract

Background: Rainfall is one of the important factors that has a significant impact on various aspects of life, especially in urban areas such as Semarang. Significant fluctuations in rainfall can cause flooding, which negatively impacts infrastructure, agriculture, health and well-being of the community. Therefore, accurate rainfall forecasting is essential to support informed decision-making.

Objective: The purpose of this study is to identify and build an optimal SARIMA model for rainfall forecasting in Semarang City.

Methods: This study used the Seasonal Autoregressive Integrated Moving Average (SARIMA) method to analyze the monthly rainfall data of Semarang City for the period 2017-2022, because it was able to handle seasonal patterns in the time series data. The best model is determined based on the Akaike Information Criterion (AIC) value, while the accuracy of the prediction is measured using the Mean Absolute Percentage Error (MAPE) value.

Results: Based on the results of the analysis, the best SARIMA model was SARIMA (1,1,0) (0,1,0)12 because it produced the smallest AIC value (121.67) and MAPE of 41.59%. This model is used to predict rainfall from January 2023 to December 2025.

Conclusion: The SARIMA (1,1,0) (0,1,0)12 model is the best model for rainfall forecasting in Semarang City. The results of this study support previous studies that state that the SARIMA method is effective for rainfall data that have high fluctuations and extreme values.

References

Agyemang, E. F., Mensah, J. A., Ocran, E., Opoku, E., & Nortey, E. N. N. (2023). Time series based road traffic accidents forecasting via SARIMA and Facebook Prophet model with potential changepoints. Heliyon, 9(12), e22544. https://doi.org/10.1016/j.heliyon.2023.e22544

Arnita, A. (2020). Comparison of Single Exponential Smoothing, Naive Model, and SARIMA Methods for Forecasting Rainfall in Medan. Jurnal Matematika, Statistika Dan Komputasi, 17(1), 117–128. https://doi.org/10.20956/jmsk.v17i1.10236

Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96. https://doi.org/10.1016/j.eswa.2005.11.021

Hillmer, S. C., & Wei, W. W. S. (1991). Time Series Analysis: Univariate and Multivariate Methods. Journal of the American Statistical Association, 86(413), 245. https://doi.org/10.2307/2289741

Huda, A. M., Choiruddin, A., Budiarto, O., & Sutikno, S. (2012). Peramalan Data Curah Hujan dengan Seasonal Autoregressive Integrated Moving Average ( SARIMA ) dengan Deteksi Outlier sebagai Upaya Optimalisasi Produksi Pertanian di Kabupaten Mojokerto. Seminar Nasional : Kedaulatan Pangan Dan Energi, Fakultas Pertanian Universitas Trunojoyo Madura. https://hal.science/hal-01677093/file/PERAMALAN-DATA-CURAH-HUJAN-DENGAN-SEASONAL-AUTOREGRESSIVE-INTEGRATED-MOVING-AVERAGE-SARIMA-DENGAN-DETEKSI-OUTLIER-SEBAGAI-UPAYA-OPTIMALISASI-PRODUKSI-PERTANIAN-DI-KABUPA (1).pdf

Khoiriyah, N. S., Silfiani, M., Novelinda, R., & Rezki, S. M. (2023). Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA. Jurnal Statistika Dan Komputasi, 2(2), 76–82. https://doi.org/10.32665/statkom.v2i2.2303

Lusiani, A., & Habinuddin, E. (1970). PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) CURAH HUJAN DI KOTA BANDUNG. Sigma-Mu, 3(2), 9–25. https://doi.org/10.35313/sigmamu.v3i2.874

Silfiani, M., Hayati, F. N., & Azka, M. (2023). Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting. Jurnal Statistika Dan Komputasi, 2(1), 12–19. https://doi.org/10.32665/statkom.v2i1.1594

Sipayung, S. B., Nurlatifah, A., & Susanti, I. (2019). Proyeksi Neraca Air Di Wilayah Nusa Tenggara Barat ( Ntb ) Berdasarkan Luaran Model Conformal Cubic Atmospheric Model ( Ccam ) ( The Projection Of Water Balance In Nusa Tenggara Barat ( Ntb ) Based On Conformal Cubic Atmospheric Model ( Ccam ) Output ). 79–90. https://jurnal.lapan.go.id/index.php/jurnal_sains/article/view/2966

Wijaya, A. S. (2017). OPTIMASI PARAMETER MODEL SUPPORT VECTOR REGRESSION UNTUK PEMODELAN BEBAN LISTRIK DI EMPAT BELAS WILAYAH DI JAWA TIMUR DENGAN MENGGUNAKAN GENETIC ALGORITHM DAN PARTICLE SWARM OPTIMIZATION [Institut Teknologi Sepuluh November]. https://repository.its.ac.id/47901/

Downloads

Additional Files

Published

2024-12-31

How to Cite

Ermawati, A., Amrullah, A., Huda, K., & Haris, M. A. (2024). Implementasi Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Memprediksi Curah Hujan di Kota Semarang. Jurnal Statistika Dan Komputasi, 3(2), 62–71. https://doi.org/10.32665/statkom.v3i2.3224
Abstract View: 40, PDF Download: 21 SIMILARITY INDEX Download: 0