Comparison of K-Means and Fuzzy C-Means for Optimizing Tuberculosis Management and Healthcare Service Allocation in Bojonegoro
Abstract View: 27, PDF Download: 12 SIMILARITY INDEX Download: 0DOI:
https://doi.org/10.32665/statkom.v3i2.3532Keywords:
Clustering, K-Means, Fuzzy C-MeansAbstract
Background: According to the 2022 publication by BPS (Statistics Bureau) of Bojonegoro Regency, there were 1,765 tuberculosis cases spread across all districts in Bojonegoro. This number is disproportionate to the availability of healthcare workers, which totaled only 1,261, comprising medical personnel, nurses, midwives, and pharmacists.
Objective: This study aims to cluster districts in Bojonegoro Regency based on tuberculosis cases and healthcare workforce data by comparing the K-Means and Fuzzy C-Means methods. The objective is to identify which districts require more attention and which are already in better condition.
Methods: The best clustering method was determined using the Sum of Squared Error (SSE) criterion. The data used in this study was sourced from the Statistics Bureau, containing information on tuberculosis cases and the number of healthcare workers in each district..
Results: The result shows that K-Means achieved a lower SSE (4704.031) compared to Fuzzy C-Means (4854.247), which divided the district into 4 clusters: low, medium, and high. By categorizing the districts into these clusters, the Bojonegoro government is expected to better target its interventions and resources. Moreover, the government can evaluate districts with high tuberculosis cases to implement specific strategies.
Conclusion: This study concludes that K-Means with 4 clusters is the most effective method for this type of clustering.
References
Anggraini, A. A., & Muharom, L. A. (2017). Pengelompokan Kecamatan Menggunakan Metode K-Means Cluster. Universitas Muhammadiyah Jember. http://repository.unmuhjember.ac.id/591/1/ARTIKEL.pdf
Fitriyah, H., Safitri, E. M., Muna, N., Khasanah, M., Aprilia, D. A., & Nurdiansyah, D. (2023). IMPLEMENTASI ALGORITMA CLUSTERING DENGAN MODIFIKASI METODE ELBOW UNTUK MENDUKUNG STRATEGI PEMERATAAN BANTUAN SOSIAL DI KABUPATEN BOJONEGORO. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1598–1607. https://doi.org/https://doi.org/10.46306/lb.v4i3.453
Giordani, P., Ferraro, M. B., & Martella, F. (2020). Fuzzy Clustering (pp. 125–211). https://doi.org/10.1007/978-981-13-0553-5_5
Hidayat, R., Wasono, R., & Darsyah, M. Y. (2017). Pengelompokan Kabupaten/Kota Di Jawa Tengah Menggunakan Metode K-Means Dan Fuzzy C-Means. Prosiding Seminar Nasional & Internasional, 240–250. https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/3017
Indraputra, R. A., & Fitriana, R. (2020). K-Means Clustering Data COVID-19. Jurnal Teknik Industri, 10(3), 275–282. https://doi.org/10.25105/jti.v10i3.8428
Jajang, J., Nurhayati, N., & Apriliana, Y. (2021). Aplikasi K-Means Dan Fuzy Clustering Dalam Pengelompokan Kecamatan Di Kabupaten Banyumas. Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 13(2), 113. https://doi.org/10.20884/1.jmp.2021.13.2.5051
Jaya, K. I., & Oktafianto, K. (2022). Berdasrkan Kecamatan Di Kabupaten Tuban Menggunakan Algoritma K-Means. Curtina, 7(1), 22–31. https://doi.org/https://doi.org/10.55719/curtina.v3i1.441
Krasnov, D., Davis, D., Malott, K., Chen, Y., Shi, X., & Wong, A. (2023). Fuzzy C-Means Clustering: A Review of Applications in Breast Cancer Detection. Entropy, 25(7), 1021. https://doi.org/10.3390/e25071021
Mar’iyah, K., & Zulkarnain. (2021). Patofisiologi Penyakit Infeksi Tuberkulosis. In Prosiding Seminar Nasional Biologi, 7(1), 88–92. https://doi.org/https://doi.org/10.24252/psb.v7i1.23169
Martos, L. A. P., García-Vico, Á. M., González, P., & Carmona, C. J. (2023). Clustering: an R library to facilitate the analysis and comparison of cluster algorithms. Progress in Artificial Intelligence, 12(1), 33–44. https://doi.org/10.1007/s13748-022-00294-2
Mathofani, P. E., & Febriyanti, R. (2020). Faktor-Faktor Yang Berhubungan Dengan Kejadian Penyakit Tuberkulosis (TB) Paru di Wilayah Kerja Puskesmas Serang Kota Tahun 2019. JURNAL ILMIAH KESEHATAN MASYARAKAT : Media Komunikasi Komunitas Kesehatan Masyarakat, 12(1), 1–10. https://doi.org/10.52022/jikm.v12i1.53
Nurdiansyah, D., Ma’ady, M. N. P., Sukmawaty, Y., Utomo, M. C. C., & Mutiani, T. (2024). CLUSTERING ANALYSIS FOR GROUPING SUB-DISTRICTS IN BOJONEGORO DISTRICT WITH THE K-MEANS METHOD WITH A VARIETY OF APPROACHES. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(2), 1095–1104. https://doi.org/10.30598/barekengvol18iss2pp1095-1104
Nurdiansyah, D., Saidah, S., & Cahyani, N. (2023). DATA MINING STUDY FOR GROUPING ELEMENTARY SCHOOLS IN BOJONEGORO REGENCY BASED ON CAPACITY AND EDUCATIONAL FACILITIES. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 1081–1092. https://doi.org/10.30598/barekengvol17iss2pp1081-1092
Nurdiansyah, D., & Sulistiawan, A. (2023). Dasar Pemrograman Komputer Dengan Open Source Software R (Untuk Bidang Sains dan Teknologi). CV. AA. RIZKY.
Pamungkas, M. A., Oktavianto, H., & Umilasari, R. (2021). Perbandingan Fuzzy C-Means Dan K-Means Untuk Mengelompokkan Tingkat Buta Huruf Berdasarkan Provinsi Di Indonesia. http://repository.unmuhjember.ac.id/8837/
Pérez-Ortega, J., Moreno-Calderón, C. F., Roblero-Aguilar, S. S., Almanza-Ortega, N. N., Frausto-Solís, J., Pazos-Rangel,
R., & Rodríguez-Lelis, J. M. (2024). A New Criterion for Improving Convergence of Fuzzy C-Means Clustering. Axioms, 13(1), 35. https://doi.org/10.3390/axioms13010035
Ramadhani, L., Purnamasari, I., & Amijaya, F. D. T. (2018). Penerapan Metode Complete Linkage dan Metode Hierarchical Clustering Multiscale Bootstrap (Studi Kasus: Kemiskinan Di Kalimantan Timur Tahun 2016). Jurnal EKSPONENSIAL, 9(1), 1–9. https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/208
Ramadhani, R. D. (2014). Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Universitas Dian Nuswantoro. Industrial Marketing Management, 1(1), 1–9. https://core.ac.uk/download/pdf/35378856.pdf
Rodiyansyah, S. F. (2017). K-Means Dan Fuzzy C-Means Pada Analisis Data Polusi Udara Di Kota X. Seminar Nasional Teknologi Informasi Dan Multimedia 2017, 25–30. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1689
Rouza, E., & Fimawahib, L. (2020). Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu. Techno.Com, 19(4), 481–495. https://doi.org/10.33633/tc.v19i4.4101
Sejati, A., & Sofiana, L. (2015). Faktor-Faktor Terjadinya Tuberkulosis. Jurnal Kesehatan Masyarakat, 10(2), 122. https://doi.org/10.15294/kemas.v10i2.3372
Selviana, N. I. (2016). Analisis perbandingan K-Means dan Fuzzy C-Means untuk pemetaan motivasi balajar mahasiswa. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI) 8, 01(01), 95–105. https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/2815
Sholikhah, N. A. (2022). Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan. Jurnal Statistika Dan Komputasi, 1(1), 42–53. https://doi.org/10.32665/statkom.v1i1.443
Sormin, R. P. A., Rumlawang, F. Y., & Sinay, L. J. (2015). Aplikasi Metode Fuzzy C-Means Untuk Pengklasteran Kelayakan Rumah Di Desa Wayame, Ambon. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 9(2), 135–146. https://doi.org/10.30598/barekengvol9iss2pp135-146
Syam, F. A. (2017). Implementasi Metode Klastering K-Means untuk Mengelompokan Hasil Evaluasi Mahasiswa. Jurnal Ilmu Komputer Dan Bisnis, 8(1), 1857–1864. https://doi.org/10.47927/jikb.v8i1.94
Wang, C., Pedrycz, W., Li, Z., & Zhou, M. (2021). Residual-driven Fuzzy C-Means Clustering for Image Segmentation. IEEE/CAA Journal of Automatica Sinica, 8(4), 876–889. https://doi.org/10.1109/JAS.2020.1003420
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this Journal agree to the following terms:
- The author retains copyright and grants the Journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allows others to share the work within an acknowledgement of the work’s authorship and initial publication of this Journal.
- Authors can enter into a separate, additional contractual arrangement for the non-exclusive distribution of the Journal’s published version of the work (e.g. acknowledgement of its initial publication in this Journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) before and during the submission process, as it can lead to productive exchanges and earlier and more extraordinary citations of published works.