Comparison of K-Means and Fuzzy C-Means for Optimizing Tuberculosis Management and Healthcare Service Allocation in Bojonegoro

Abstract View: 27, PDF Download: 12 SIMILARITY INDEX Download: 0

Authors

  • Riko Al Muiz PD BPR Bank Daerah Bojonegoro

DOI:

https://doi.org/10.32665/statkom.v3i2.3532

Keywords:

Clustering, K-Means, Fuzzy C-Means

Abstract

Background: According to the 2022 publication by BPS (Statistics Bureau) of Bojonegoro Regency, there were 1,765 tuberculosis cases spread across all districts in Bojonegoro. This number is disproportionate to the availability of healthcare workers, which totaled only 1,261, comprising medical personnel, nurses, midwives, and pharmacists.

Objective: This study aims to cluster districts in Bojonegoro Regency based on tuberculosis cases and healthcare workforce data by comparing the K-Means and Fuzzy C-Means methods. The objective is to identify which districts require more attention and which are already in better condition.

Methods: The best clustering method was determined using the Sum of Squared Error (SSE) criterion. The data used in this study was sourced from the Statistics Bureau, containing information on tuberculosis cases and the number of healthcare workers in each district..

Results: The result shows that K-Means achieved a lower SSE (4704.031) compared to Fuzzy C-Means (4854.247), which divided the district into 4 clusters: low, medium, and high. By categorizing the districts into these clusters, the Bojonegoro government is expected to better target its interventions and resources. Moreover, the government can evaluate districts with high tuberculosis cases to implement specific strategies.

Conclusion: This study concludes that K-Means with 4 clusters is the most effective method for this type of clustering.

References

Anggraini, A. A., & Muharom, L. A. (2017). Pengelompokan Kecamatan Menggunakan Metode K-Means Cluster. Universitas Muhammadiyah Jember. http://repository.unmuhjember.ac.id/591/1/ARTIKEL.pdf

Fitriyah, H., Safitri, E. M., Muna, N., Khasanah, M., Aprilia, D. A., & Nurdiansyah, D. (2023). IMPLEMENTASI ALGORITMA CLUSTERING DENGAN MODIFIKASI METODE ELBOW UNTUK MENDUKUNG STRATEGI PEMERATAAN BANTUAN SOSIAL DI KABUPATEN BOJONEGORO. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1598–1607. https://doi.org/https://doi.org/10.46306/lb.v4i3.453

Giordani, P., Ferraro, M. B., & Martella, F. (2020). Fuzzy Clustering (pp. 125–211). https://doi.org/10.1007/978-981-13-0553-5_5

Hidayat, R., Wasono, R., & Darsyah, M. Y. (2017). Pengelompokan Kabupaten/Kota Di Jawa Tengah Menggunakan Metode K-Means Dan Fuzzy C-Means. Prosiding Seminar Nasional & Internasional, 240–250. https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/3017

Indraputra, R. A., & Fitriana, R. (2020). K-Means Clustering Data COVID-19. Jurnal Teknik Industri, 10(3), 275–282. https://doi.org/10.25105/jti.v10i3.8428

Jajang, J., Nurhayati, N., & Apriliana, Y. (2021). Aplikasi K-Means Dan Fuzy Clustering Dalam Pengelompokan Kecamatan Di Kabupaten Banyumas. Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 13(2), 113. https://doi.org/10.20884/1.jmp.2021.13.2.5051

Jaya, K. I., & Oktafianto, K. (2022). Berdasrkan Kecamatan Di Kabupaten Tuban Menggunakan Algoritma K-Means. Curtina, 7(1), 22–31. https://doi.org/https://doi.org/10.55719/curtina.v3i1.441

Krasnov, D., Davis, D., Malott, K., Chen, Y., Shi, X., & Wong, A. (2023). Fuzzy C-Means Clustering: A Review of Applications in Breast Cancer Detection. Entropy, 25(7), 1021. https://doi.org/10.3390/e25071021

Mar’iyah, K., & Zulkarnain. (2021). Patofisiologi Penyakit Infeksi Tuberkulosis. In Prosiding Seminar Nasional Biologi, 7(1), 88–92. https://doi.org/https://doi.org/10.24252/psb.v7i1.23169

Martos, L. A. P., García-Vico, Á. M., González, P., & Carmona, C. J. (2023). Clustering: an R library to facilitate the analysis and comparison of cluster algorithms. Progress in Artificial Intelligence, 12(1), 33–44. https://doi.org/10.1007/s13748-022-00294-2

Mathofani, P. E., & Febriyanti, R. (2020). Faktor-Faktor Yang Berhubungan Dengan Kejadian Penyakit Tuberkulosis (TB) Paru di Wilayah Kerja Puskesmas Serang Kota Tahun 2019. JURNAL ILMIAH KESEHATAN MASYARAKAT : Media Komunikasi Komunitas Kesehatan Masyarakat, 12(1), 1–10. https://doi.org/10.52022/jikm.v12i1.53

Nurdiansyah, D., Ma’ady, M. N. P., Sukmawaty, Y., Utomo, M. C. C., & Mutiani, T. (2024). CLUSTERING ANALYSIS FOR GROUPING SUB-DISTRICTS IN BOJONEGORO DISTRICT WITH THE K-MEANS METHOD WITH A VARIETY OF APPROACHES. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(2), 1095–1104. https://doi.org/10.30598/barekengvol18iss2pp1095-1104

Nurdiansyah, D., Saidah, S., & Cahyani, N. (2023). DATA MINING STUDY FOR GROUPING ELEMENTARY SCHOOLS IN BOJONEGORO REGENCY BASED ON CAPACITY AND EDUCATIONAL FACILITIES. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 1081–1092. https://doi.org/10.30598/barekengvol17iss2pp1081-1092

Nurdiansyah, D., & Sulistiawan, A. (2023). Dasar Pemrograman Komputer Dengan Open Source Software R (Untuk Bidang Sains dan Teknologi). CV. AA. RIZKY.

Pamungkas, M. A., Oktavianto, H., & Umilasari, R. (2021). Perbandingan Fuzzy C-Means Dan K-Means Untuk Mengelompokkan Tingkat Buta Huruf Berdasarkan Provinsi Di Indonesia. http://repository.unmuhjember.ac.id/8837/

Pérez-Ortega, J., Moreno-Calderón, C. F., Roblero-Aguilar, S. S., Almanza-Ortega, N. N., Frausto-Solís, J., Pazos-Rangel,

R., & Rodríguez-Lelis, J. M. (2024). A New Criterion for Improving Convergence of Fuzzy C-Means Clustering. Axioms, 13(1), 35. https://doi.org/10.3390/axioms13010035

Ramadhani, L., Purnamasari, I., & Amijaya, F. D. T. (2018). Penerapan Metode Complete Linkage dan Metode Hierarchical Clustering Multiscale Bootstrap (Studi Kasus: Kemiskinan Di Kalimantan Timur Tahun 2016). Jurnal EKSPONENSIAL, 9(1), 1–9. https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/208

Ramadhani, R. D. (2014). Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Universitas Dian Nuswantoro. Industrial Marketing Management, 1(1), 1–9. https://core.ac.uk/download/pdf/35378856.pdf

Rodiyansyah, S. F. (2017). K-Means Dan Fuzzy C-Means Pada Analisis Data Polusi Udara Di Kota X. Seminar Nasional Teknologi Informasi Dan Multimedia 2017, 25–30. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1689

Rouza, E., & Fimawahib, L. (2020). Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu. Techno.Com, 19(4), 481–495. https://doi.org/10.33633/tc.v19i4.4101

Sejati, A., & Sofiana, L. (2015). Faktor-Faktor Terjadinya Tuberkulosis. Jurnal Kesehatan Masyarakat, 10(2), 122. https://doi.org/10.15294/kemas.v10i2.3372

Selviana, N. I. (2016). Analisis perbandingan K-Means dan Fuzzy C-Means untuk pemetaan motivasi balajar mahasiswa. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI) 8, 01(01), 95–105. https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/2815

Sholikhah, N. A. (2022). Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan. Jurnal Statistika Dan Komputasi, 1(1), 42–53. https://doi.org/10.32665/statkom.v1i1.443

Sormin, R. P. A., Rumlawang, F. Y., & Sinay, L. J. (2015). Aplikasi Metode Fuzzy C-Means Untuk Pengklasteran Kelayakan Rumah Di Desa Wayame, Ambon. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 9(2), 135–146. https://doi.org/10.30598/barekengvol9iss2pp135-146

Syam, F. A. (2017). Implementasi Metode Klastering K-Means untuk Mengelompokan Hasil Evaluasi Mahasiswa. Jurnal Ilmu Komputer Dan Bisnis, 8(1), 1857–1864. https://doi.org/10.47927/jikb.v8i1.94

Wang, C., Pedrycz, W., Li, Z., & Zhou, M. (2021). Residual-driven Fuzzy C-Means Clustering for Image Segmentation. IEEE/CAA Journal of Automatica Sinica, 8(4), 876–889. https://doi.org/10.1109/JAS.2020.1003420

Downloads

Additional Files

Published

2024-12-31

How to Cite

Muiz, R. A. (2024). Comparison of K-Means and Fuzzy C-Means for Optimizing Tuberculosis Management and Healthcare Service Allocation in Bojonegoro. Jurnal Statistika Dan Komputasi, 3(2), 80–91. https://doi.org/10.32665/statkom.v3i2.3532
Abstract View: 27, PDF Download: 12 SIMILARITY INDEX Download: 0