Clustering Study Of Hospitals In Bojonegoro Based On Health Workers With K-Means And K-Medoids Methods
Abstract View: 30, PDF Download: 12 SIMILARITY INDEX Download: 0DOI:
https://doi.org/10.32665/statkom.v3i2.3592Keywords:
Hospital, K-Means, K-MedoidsAbstract
Background: Hospitals are institutions that provide inpatient care for the sick. In Bojonegoro, hospital services are considered adequate. However, a shortage of nurses often requires patients' families to assist with care.
Objective: This research aims to compare clustering methods to find the best method that can be applied to cluster hospitals based on the type of health workers.
Methods: This study uses two clustering methods, namely K-Means and K-Medoids Clustering, which are compared to determine the best method. The data source used is secondary data, which consists of the number of medical staff for each medical position, obtained from the Satu Data Bojonegoro website in 2020.
Results: The K-means method proved to be the best for grouping healthcare workforce data. Its average within-cluster distance value is -6.763, the closest to zero. The K-means method resulted in 4 clusters. These include cluster_0 (3 hospitals), cluster_1 (1 hospital), cluster_2 (1 hospital), and cluster_3 (5 hospitals).
Conclusion: The clustering results show that K-Means with 4 clusters is the best method, with Cluster_0 and Cluster_3 having below-average health workers, and Cluster_1 and Cluster_2 having above-average health workers, with Cluster_2 having the highest and Cluster_3 the lowest number of health workers in Bojonegoro.
References
Anggreini, N. L., & Tresnawati, S. (2020). Komparasi Algoritma K-Means Dan K-Medoids Untuk Menangani Strategi Promosi Di Politeknik TEDC Bandung. Jurnal TEDC, 14(2), 120–127.
Buaton, R., Zarlis, M., & Mawengkang, H. (2020). Model Optimasi Prediksi dengan Model Association Rule Best Time Series (ARBT) Pada Data Mining Time Series. … Teknologi Komputer & …, 715–720. https://prosiding.seminar-id.com/index.php/sainteks/article/view/538
Fitriyah, H., Safitri, E. M., Muna, N., Khasanah, M., Aprilia, D. A., & Nurdiansyah, D. (2023). IMPLEMENTASI ALGORITMA CLUSTERING DENGAN MODIFIKASI METODE ELBOW UNTUK MENDUKUNG STRATEGI PEMERATAAN BANTUAN SOSIAL DI KABUPATEN BOJONEGORO. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1598–1607. https://doi.org/https://doi.org/10.46306/lb.v4i3.453
Herlinda, V., Darwis, D., & Dartono, D. (2021). ANALISIS CLUSTERING UNTUK RECREDESIALING FASILITAS KESEHATAN MENGGUNAKAN METODE FUZZY C-MEANS. Jurnal Teknologi Dan Sistem Informasi, 2(2), 94–99. https://doi.org/https://doi.org/10.33365/jtsi.v2i2.890
Hutagalung, L. E. (2022). Analisa Manajemen Risiko Sistem Informasi Manajemen Rumah Sakit (Simrs) Pada Rumah Sakit Xyz Menggunakan Iso 31000. Jurnal Telka, 12(01), 23–33. https://doi.org/10.36342/teika.v12i01.2820
Kamila, I., Khairunnisa, U., & Mustakim. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 5(1), 119–125.
Khayudin, B. A., Nurfain, & Retno Kusuma Hati, D. (2022). PENGALAMAN PERAWAT DALAM MERAWAT PASIEN TOTAL CARE DI RUANG ICU RSUD DR. R. SOSODORO DJATIKOESOEMO BOJONEGORO. Jurnal Ilmu Kesehatan MAKIA, 12(2), 111–118. https://doi.org/10.37413/.v12i2.235
Mardalius. (2018). Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means. IV(2), 401–411.
Mujiasih, S. (2011). Pemanfatan Data Mining Untuk Prakiraan Cuaca. Jurnal Meteorologi Dan Geofisika, 12(2), 189–195. https://doi.org/10.31172/jmg.v12i2.100
Nandagopal, S., Karthik, S., & Arunachalam, V. P. (2010). Mining of meteorological data using Modified Apriori algorithm. European Journal of Scientific Research, 47(2), 295–308.
Nurdiansyah, D., & Sulistiawan, A. (2023). PEMODELAN JUMLAH KASUS DEMAM BERDARAH DENGUE DENGAN MENGGUNAKAN MODEL AUTOREGRESSIVE DISTRIBUTED LAG. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1965–1977. https://doi.org/10.46306/lb.v4i3.526
Rachdiansyah, I., & Tesmanto, J. (2021). Pengaruh Audit Manajemen Sumber Daya Manusia terhadap Kinerja Karyawan di Rumah Sakit Umum Daerah Kota Bekasi. VISA: Journal of Vision and Ideas, 1(1), 1–13. https://doi.org/10.47467/visa.v1i1.756
Sholikhah, N. A. (2022). Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan. Jurnal Statistika Dan Komputasi, 1(1), 42–53. https://doi.org/10.32665/statkom.v1i1.443
Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. JURTEKSI, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28
Sundari, S., Damanik, I. S., Windarto, A. P., Tambunan, H. S., Jalaluddin, J., & Wanto, A. (2019). Analisis K-Medoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita di Indonesia. Prosiding Seminar Nasional Riset Information Science (SENARIS), 687–696. https://doi.org/10.30645/senaris.v1i0.75
Zulfa, N. S. L., & Hadiana, A. (2021). KAJIAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM STRATEGI PROMOSI (Studi Kasus: Universitas Islam Al-Ihya Kuningan) Neng. Jurnal Fakultas Teknik, 2(2), 57–62. https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this Journal agree to the following terms:
- The author retains copyright and grants the Journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allows others to share the work within an acknowledgement of the work’s authorship and initial publication of this Journal.
- Authors can enter into a separate, additional contractual arrangement for the non-exclusive distribution of the Journal’s published version of the work (e.g. acknowledgement of its initial publication in this Journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) before and during the submission process, as it can lead to productive exchanges and earlier and more extraordinary citations of published works.