Clustering Study Of Hospitals In Bojonegoro Based On Health Workers With K-Means And K-Medoids Methods

Abstract View: 30, PDF Download: 12 SIMILARITY INDEX Download: 0

Authors

  • Elsa Maulida Safitri Universitas Nahdlatul Ulama Sunan Giri

DOI:

https://doi.org/10.32665/statkom.v3i2.3592

Keywords:

Hospital, K-Means, K-Medoids

Abstract

Background: Hospitals are institutions that provide inpatient care for the sick. In Bojonegoro, hospital services are considered adequate. However, a shortage of nurses often requires patients' families to assist with care.

Objective: This research aims to compare clustering methods to find the best method that can be applied to cluster hospitals based on the type of health workers.

Methods: This study uses two clustering methods, namely K-Means and K-Medoids Clustering, which are compared to determine the best method. The data source used is secondary data, which consists of the number of medical staff for each medical position, obtained from the Satu Data Bojonegoro website in 2020.

Results: The K-means method proved to be the best for grouping healthcare workforce data. Its average within-cluster distance value is -6.763, the closest to zero. The K-means method resulted in 4 clusters. These include cluster_0 (3 hospitals), cluster_1 (1 hospital), cluster_2 (1 hospital), and cluster_3 (5 hospitals).

Conclusion: The clustering results show that K-Means with 4 clusters is the best method, with Cluster_0 and Cluster_3 having below-average health workers, and Cluster_1 and Cluster_2 having above-average health workers, with Cluster_2 having the highest and Cluster_3 the lowest number of health workers in Bojonegoro.

References

Anggreini, N. L., & Tresnawati, S. (2020). Komparasi Algoritma K-Means Dan K-Medoids Untuk Menangani Strategi Promosi Di Politeknik TEDC Bandung. Jurnal TEDC, 14(2), 120–127.

Buaton, R., Zarlis, M., & Mawengkang, H. (2020). Model Optimasi Prediksi dengan Model Association Rule Best Time Series (ARBT) Pada Data Mining Time Series. … Teknologi Komputer & …, 715–720. https://prosiding.seminar-id.com/index.php/sainteks/article/view/538

Fitriyah, H., Safitri, E. M., Muna, N., Khasanah, M., Aprilia, D. A., & Nurdiansyah, D. (2023). IMPLEMENTASI ALGORITMA CLUSTERING DENGAN MODIFIKASI METODE ELBOW UNTUK MENDUKUNG STRATEGI PEMERATAAN BANTUAN SOSIAL DI KABUPATEN BOJONEGORO. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1598–1607. https://doi.org/https://doi.org/10.46306/lb.v4i3.453

Herlinda, V., Darwis, D., & Dartono, D. (2021). ANALISIS CLUSTERING UNTUK RECREDESIALING FASILITAS KESEHATAN MENGGUNAKAN METODE FUZZY C-MEANS. Jurnal Teknologi Dan Sistem Informasi, 2(2), 94–99. https://doi.org/https://doi.org/10.33365/jtsi.v2i2.890

Hutagalung, L. E. (2022). Analisa Manajemen Risiko Sistem Informasi Manajemen Rumah Sakit (Simrs) Pada Rumah Sakit Xyz Menggunakan Iso 31000. Jurnal Telka, 12(01), 23–33. https://doi.org/10.36342/teika.v12i01.2820

Kamila, I., Khairunnisa, U., & Mustakim. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 5(1), 119–125.

Khayudin, B. A., Nurfain, & Retno Kusuma Hati, D. (2022). PENGALAMAN PERAWAT DALAM MERAWAT PASIEN TOTAL CARE DI RUANG ICU RSUD DR. R. SOSODORO DJATIKOESOEMO BOJONEGORO. Jurnal Ilmu Kesehatan MAKIA, 12(2), 111–118. https://doi.org/10.37413/.v12i2.235

Mardalius. (2018). Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means. IV(2), 401–411.

Mujiasih, S. (2011). Pemanfatan Data Mining Untuk Prakiraan Cuaca. Jurnal Meteorologi Dan Geofisika, 12(2), 189–195. https://doi.org/10.31172/jmg.v12i2.100

Nandagopal, S., Karthik, S., & Arunachalam, V. P. (2010). Mining of meteorological data using Modified Apriori algorithm. European Journal of Scientific Research, 47(2), 295–308.

Nurdiansyah, D., & Sulistiawan, A. (2023). PEMODELAN JUMLAH KASUS DEMAM BERDARAH DENGUE DENGAN MENGGUNAKAN MODEL AUTOREGRESSIVE DISTRIBUTED LAG. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1965–1977. https://doi.org/10.46306/lb.v4i3.526

Rachdiansyah, I., & Tesmanto, J. (2021). Pengaruh Audit Manajemen Sumber Daya Manusia terhadap Kinerja Karyawan di Rumah Sakit Umum Daerah Kota Bekasi. VISA: Journal of Vision and Ideas, 1(1), 1–13. https://doi.org/10.47467/visa.v1i1.756

Sholikhah, N. A. (2022). Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan. Jurnal Statistika Dan Komputasi, 1(1), 42–53. https://doi.org/10.32665/statkom.v1i1.443

Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. JURTEKSI, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28

Sundari, S., Damanik, I. S., Windarto, A. P., Tambunan, H. S., Jalaluddin, J., & Wanto, A. (2019). Analisis K-Medoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita di Indonesia. Prosiding Seminar Nasional Riset Information Science (SENARIS), 687–696. https://doi.org/10.30645/senaris.v1i0.75

Zulfa, N. S. L., & Hadiana, A. (2021). KAJIAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM STRATEGI PROMOSI (Studi Kasus: Universitas Islam Al-Ihya Kuningan) Neng. Jurnal Fakultas Teknik, 2(2), 57–62. https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part

Downloads

Additional Files

Published

2024-12-31

How to Cite

Safitri, E. M. (2024). Clustering Study Of Hospitals In Bojonegoro Based On Health Workers With K-Means And K-Medoids Methods. Jurnal Statistika Dan Komputasi, 3(2), 92–102. https://doi.org/10.32665/statkom.v3i2.3592
Abstract View: 30, PDF Download: 12 SIMILARITY INDEX Download: 0