ANALISIS DINAMIS MODEL MATEMATIKA PERTUMBUHAN JUMLAH MAHASISWA PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI PASURUAN

Abstract View: 439, PDF Download: 420

Authors

  • Wahyuni Ningsih STKIP PGRI Pasuruan
  • Rif’atul Khusniah STKIP PGRI Pasuruan

DOI:

https://doi.org/10.32665/james.v1iOctober.38

Keywords:

analisis dinamis, kestabilan, metode Runge-Kutta, titik setimbang, dynamic analysis, equilibrium point, Runge-Kutta method, stability

Abstract

Mathematical Models of population growth on the number of students, especially in the mathematics education program STKIP PGRI Pasuruan has been obtained. One of the purposes of this modeling was to find out the behavior of the model or system. To determine the behavior of the systems can be used dynamic analysis of the model. Therefore, a dynamic analysis of the growth model in the number of students, especially in the mathematics education program STKIP PGRI Pasuruan has been done in this article. The dynamic analysis that is used in this article is about a stability analysis around the equilibrium point of the model. Completion of the model using the Runge-Kutta method was simulated so that obtained a graphical completion of the model. Analytical and graphical systems stability analysis showed that the system was asymptotically unstable.

 

Model matematika pertumbuhan populasi pada jumlah mahasiswa, khususnya di program studi pendidikan matematika STKIP PGRI Pasuruan sudah didapatkan. Salah satu tujuan dilakukan pemodelan ini adalah untuk mengetahui perilaku dari model atau sistem. Untuk mengetahui perilaku sistem dapat digunakan analisis dinamis terhadap model. Oleh karena itu, pada artikel ini dilakukan analisis dinamis terhadap model pertumbuhan jumlah mahasiswa program studi pendidikan matematika STKIP PGRI Pasuruan. Analisis dinamis yang digunakan pada artikel ini berupa analisis kestabilan sistem di sekitar titik setimbang model. Penyelesaian model menggunakan metode Runge-Kutta yang di simulasikan sehingga diperoleh bentuk penyelesaian model secara grafik. Analisis kestabilan sistem secara analitik dan grafik menunjukkan bahwa sistem tidak stabil asimtotik.

References

[1] W. Ningsih and R. Khusniah, “Pemodelan Matematika pada Pertumbuhan Jumlah Mahasiswa Program Studi Pendidikan Matematika STKIP PGRI Pasuruan,” presented at the KNM XIX, Universitas Brawijaya Malang, (2018).
[2] X. Guangqing and Z. Ji, “System dynamics: principles, characteristics and Recent Advances [J],” Harbin Inst. Technol. Univ., vol. 8, no. 4, (2006) 72–74.
[3] F. Ying, “The Dynamic Analysis and Mathematic Modeling for Regional Tourism System,” presented at the 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), (2014) 696–699.
[4] B. W. Bequette, Process Dynamic?: Modeling, Analysis, and Simulation. Prentice Hall, Inc, (1998).
[5] W.E. Boyce and R.C. Di Prima, Elementary Differential Equations and Boundary Value Problems (Ninth ed.). USA: John Willey & Sons, Inc, (2009).
[6] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Berlin: Springer, (1990).
[7] W.M. Haddad and V.S. Cellaboina, Nonlinear Dynamical Systems and Control. New Jersey: Princeton University Press, (2008).

Downloads

Published

2018-10-25

How to Cite

[1]
W. Ningsih and R. Khusniah, “ANALISIS DINAMIS MODEL MATEMATIKA PERTUMBUHAN JUMLAH MAHASISWA PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI PASURUAN”, JaMES, vol. 1, no. 2, pp. 61–66, Oct. 2018.
Abstract View: 439, PDF Download: 420