ANALISIS DINAMIS MODEL MATEMATIKA PERTUMBUHAN JUMLAH MAHASISWA PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI PASURUAN
Abstract View: 442, PDF Download: 427DOI:
https://doi.org/10.32665/james.v1iOctober.38Keywords:
analisis dinamis, kestabilan, metode Runge-Kutta, titik setimbang, dynamic analysis, equilibrium point, Runge-Kutta method, stabilityAbstract
Mathematical Models of population growth on the number of students, especially in the mathematics education program STKIP PGRI Pasuruan has been obtained. One of the purposes of this modeling was to find out the behavior of the model or system. To determine the behavior of the systems can be used dynamic analysis of the model. Therefore, a dynamic analysis of the growth model in the number of students, especially in the mathematics education program STKIP PGRI Pasuruan has been done in this article. The dynamic analysis that is used in this article is about a stability analysis around the equilibrium point of the model. Completion of the model using the Runge-Kutta method was simulated so that obtained a graphical completion of the model. Analytical and graphical systems stability analysis showed that the system was asymptotically unstable.
Model matematika pertumbuhan populasi pada jumlah mahasiswa, khususnya di program studi pendidikan matematika STKIP PGRI Pasuruan sudah didapatkan. Salah satu tujuan dilakukan pemodelan ini adalah untuk mengetahui perilaku dari model atau sistem. Untuk mengetahui perilaku sistem dapat digunakan analisis dinamis terhadap model. Oleh karena itu, pada artikel ini dilakukan analisis dinamis terhadap model pertumbuhan jumlah mahasiswa program studi pendidikan matematika STKIP PGRI Pasuruan. Analisis dinamis yang digunakan pada artikel ini berupa analisis kestabilan sistem di sekitar titik setimbang model. Penyelesaian model menggunakan metode Runge-Kutta yang di simulasikan sehingga diperoleh bentuk penyelesaian model secara grafik. Analisis kestabilan sistem secara analitik dan grafik menunjukkan bahwa sistem tidak stabil asimtotik.
References
[2] X. Guangqing and Z. Ji, “System dynamics: principles, characteristics and Recent Advances [J],” Harbin Inst. Technol. Univ., vol. 8, no. 4, (2006) 72–74.
[3] F. Ying, “The Dynamic Analysis and Mathematic Modeling for Regional Tourism System,” presented at the 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), (2014) 696–699.
[4] B. W. Bequette, Process Dynamic?: Modeling, Analysis, and Simulation. Prentice Hall, Inc, (1998).
[5] W.E. Boyce and R.C. Di Prima, Elementary Differential Equations and Boundary Value Problems (Ninth ed.). USA: John Willey & Sons, Inc, (2009).
[6] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Berlin: Springer, (1990).
[7] W.M. Haddad and V.S. Cellaboina, Nonlinear Dynamical Systems and Control. New Jersey: Princeton University Press, (2008).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work