Perbandingan Hybrid Algoritma Genetika dengan Multilayer Perception dan Geometric Brownian Motion untuk Memprediksi Harga Saham
Abstract View: 257, PDF Download: 228DOI:
https://doi.org/10.32665/james.v5i2.494Keywords:
Hybrid Genetic Algorithm and Multilayer Perceptron, Hybrid Genetic Algorithm and Geometric Brownian Motion, Stock, Saham, Hybrid Algoritma Genetika dan Multilayer Perceptron, Hybrid Algoritma Genetika dan Geometric Brownian MotionAbstract
Saham didefinisikan sebagai tanda kepemilikan investor atas investasi mereka atau sejumlah dana yang diinvestasikan dalam suatu perusahaan. Tujuan perusahaan menerbitkan saham yakni untuk memperoleh tambahan modal dari setiap lembar yang terjual. Semakin banyak saham yang dimiliki oleh para investor maka menunjukkan semakin tinggi tingkat kinerja perusahaan. Hasil prediksi dari pergerakan harga saham sangat penting untuk mengembangkan strategi perdagangan pasar. Prediksi harga saham dapat mengantisipasi kerugian investasi dan memberikan keuntungan optimal bagi para investor. Pada penelitian ini, akan dilakukan prediksi harga saham perusahaan Microsoft menggunakan metode hybrid algoritma genetika dan multilayer perceptron, serta dengan metode hybrid algoritma genetika dan geometric Brownian motion. Nilai MAPE yang dihasilkan dari hybrid algoritma genetika dan geometric Brownian motion adalah sebesar 0.0057139, sedangkan nilai MAPE yang dihasilkan oleh hybrid algoritma genetika dan multilayer perceptron adalah sebesar 0.05164. Nilai MAPE hasil prediksi menggunakan hybrid algoritma genetika dan geometric Brownian motion lebih baik dibandingkan dengan nilai MAPE hasil prediksi menggunakan hybrid algoritma genetika dan multilayer perceptron.
References
M. Aziz, S. Mintari, and M. Nadir, Manajemen Investasi. Yogyakarta: Deepublish, 2015.
Y. Kara, M. A. Boyacioglu, and O. K. Baykan, “Predicting Direction of Stock Price Index Movement Using Artificial Neural Networks and Support Vector Machines: The Sample of The Istanbul Stock Exchange,” Expert Systems with Applications, Elsevier, vol. 38, pp. 5311–5319, 2011.
M. Szmigiera, “https://www.statista.com/statistics/263264/top-companies-in- the-world-by-market-value/,” 2019.
M. Qiu and Y. Song, “Prediicting The Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network,” Department of Systems Management, Fakuoka Institute of Technology, vol. 11, no. 5, 2016.
N. Masoud, “Predicting Direction of Stock Prices Index Movement Using Artificial Neural Networks: The Case of Libyan Financial Market,” Journal of Economics Management & Trade, vol. 4, no. 4, pp. 597–619, 2014.
V. Amin, S. H. Salehnezhad, M. Valipour, and S. Nasirlu, “Predicting Direction of Stock Price Index Volatility Using Genetic Algorithms and Artificial Neural Network Models in Tehran Stock Exchange,” International Journal of Business and Technopreneurship, vol. 4, no. 3, pp. 451–465, 2014.
K. Reddy and V. Clinton, “Simulating Stock Proces Using Geometric Brownian motion: Evidence from Australian Companies,” Australasian Accounting, Business and Finance Journal, vol. 10, no. 3, pp. 23–47, 2016.
M. Azizah, M. I. Irawan, and E. R. M. Putri, “Comparison of stock price prediction using geometric Brownian motion and multilayer perceptron,” in AIP Conference Proceedings, 2020, vol. 2242. doi: 10.1063/5.0008066.
Yahoo Finance, “https://finance.yahoo.com/quote/MSFT/history?p=MSFT/,” 2019.
G. Paul, Monte Carlo Methods in Financial Enginering. New York: Springer Science Business Media, 2003.
A. N. Borodin and P. Salminen, Handbook of Brownian Motion Fact and Formulae, Second Edition. Berlin: Springer, 2002.
M. I. Irawan, Dasar - Dasar Jaringan Saraf Tiruan Algoritma, Pemrograman dan Contoh Aplikasinya. Surabaya: ITS Press, 2013.
K. C. Laudon and J. P. Laudon, Sistem Informasi Manajemen Mengelola Perusahaan Digital, Edisi 10. Jakarta: Salemba Empat, 2008.
R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, Second Edition. Canada: John Wiley & Sons Inc, 2004.
F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness of Fit,” J Am Stat Assoc, vol. 46, no. 253, pp. 68–78, 1951.
Y. C. Chen, S. L. Chang, and C. C. Wu, “A Dynamic Hybrid Option Pricing Model by Genetic Algorithm and Black-Scholes Model,” International journal of Economics and Management Engineering, vol. 4, no. 9, 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Mathematics Education and Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work