Analisis Sentimen Ulasan Pengguna BRImo Terhadap Pembaruan Fitur Aplikasi Menggunakan Naive Bayes Dengan Seleksi Fitur Chi-Square
PDF Download: 13
SIMILARITY INDEX Download: 0
DOI:
https://doi.org/10.32665/statkom.v4i2.5194Keywords:
Sentiment Analysis, BRImo, Naive Bayes, Chi-SquareAbstract
Background: The BRImo app is a mobile banking service from Bank Rakyat Indonesia (BRI) with a large number of users. User reviews on Google Play Store are an important source of data for understanding user perceptions and satisfaction levels, but the number and diversity of review texts require an appropriate sentiment analysis method.
Objective: This study aims to evaluate the performance of the Naive Bayes algorithm in classifying BRImo reviews by sentiment and the effect of Chi-Square feature selection.
Methods: The research method includes text data preprocessing consisting of cleaning, case folding, tokenizing, normalization, filtering, and stemming. Next, feature weighting is performed using TF-IDF and feature selection using the Chi-Square method, followed by sentiment classification using the Naive Bayes algorithm. Model evaluation is performed using a confusion matrix with accuracy, precision, recall, and F1-score metrics.
Results: The results show that the sentiment classification model achieved an accuracy of 95%, precision of 98%, recall of 96%, and an F1-score of 97%. The high recall value indicates the model's excellent ability to detect positive sentiment in user reviews.
Conclusion: The Naive Bayes algorithm with Chi-Square feature selection is effective in analyzing BRImo application review sentiment and can be used as a basis for evaluating application development, but its performance is still limited in detecting negative sentiment due to the quantity of sentiment data.
References
Andriani, N., & Wibowo, A. (2021). Implementasi Text Mining Klasifikasi Topik Tugas Akhir Mahasiswa Teknik Informatika Menggunakan Pembobotan TF-IDF dan Metode Cosine Similarity Berbasis Web. Senamika, September, 130–137. https://conference.upnvj.ac.id/index.php/senamika/article/view/1807%0Ahttp
Anisah, S., Honggowibowo, A. S., & Pujiastuti, A. (2016). Klasifikasi Teks Menggunakan Chi Square Feature Selection Untuk Menentukan Komik Berdasarkan Periode, Materi Dan Fisikdengan Algoritma Naïve Bayes. Compiler, 5(2). https://doi.org/10.28989/compiler.v5i2.171
Arifat, M., Putri, W. A., & Mufida, A. S. (2023). Penerapan Metode Naive Bayes Classifier Untuk Klasifikasi Indeks Pembangunan Manusia Di Provinsi Jawa Timur. Jurnal Statistika Dan Komputasi, 2(1), 31–43. https://doi.org/10.32665/statkom.v2i1.1661
Arminda, N. F., Sulistiyowati, N., & Padilah, T.N. (2023). Implementasi Algoritma Multinomial Naive Bayes Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Brimo. JATI, 7(3), 1817–1822. https://doi.org/10.36040/jati.v7i3.7012
Chen, H., Hu, S., Hua, R., & Zhao, X. (2021). Improved naive Bayes classification algorithm for traffic risk management. EURASIP Journal on Advances in Signal Processing, 2021(1). https://doi.org/10.1186/s13634-021-00742-6
Elysa, N. S., Arini, L., Murad, D. F., & Leandros, R. (2023). User Experience Satisfaction Analysis of Customers on the BRI Mobile Application (BRImo). Procedia Computer Science, 227, 680–689. https://doi.org/10.1016/j.procs.2023.10.572
Ernayanti, T., Mustafid, M., Rusgiyono, A., & Hakim, A. R. (2022). Penggunaan Seleksi Fitur Chi-Square Dan Algoritma Multinomial Naïve Bayes Untuk Analisis Sentimen Pelangggan Tokopedia. Jurnal Gaussian, 11(4), 562–571. https://doi.org/10.14710/j.gauss.11.4.562-571
Farissa, R. A., Mayasari, R., & Umaidah, Y. (2021). Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung. Journal of Applied Informatics and Computing, 5(2), 109–116. https://doi.org/10.30871/jaic.v5i1.3237
Gautam, P. K., & Waoo, A. A. (2024). Improved Hybrid Feature Selection Approach for Sentiment Classification : Integrating Chi-Square and Recursive Feature Elimination. Frontiers in Health Informatics. 13(3), 10570–10582. https://healthinformaticsjournal.com/index.php/IJMI/article/view/1008
Habiba, A., Isnanto, R. R., & Suseno, J. E. (2023). The Effect of Chi Square Feature Selection on the Naïve Bayes Algorithm on the Analysis of Indonesian Society’s Sentiment About Face-to-Face Learning During the Covid-19 Pandemic. JST (Jurnal Sains Dan Teknologi), 12(1), 190-199. https://doi.org/10.23887/jstundiksha.v12i1.51899
Insan, M. K. K., Hayati, U., & Nurdiawan, O. (2023). Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di
Google Play Menggunakan Algoritma Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 478–483. https://doi.org/10.36040/jati.v7i1.6373
Paembonan, S., & Abduh, H. (2021). Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 6(2), 48. https://doi.org/10.51557/pt_jiit.v6i2.659
Permana, I. S., Halim, C., Nenti, N.S., & Riza, N. (2022). Analisis Kinerja Keuangan Dengan Menggunakan Rasio Likuiditas, Solvabilitas Dan Profitabilitas Pada PT. Bank BNI (Persero), TBK. Jurnal Aktiva Riset Akuntansi Dan Keuangan, 4(1), 32–43. https://doi.org/10.52005/aktiva.v4i1.150
Prastyo, P. H., Ardiyanto, I., & Hidayat, R. (2021). A Combination of Query Expansion Ranking and GA-SVM for Improving Indonesian Sentiment Classification Performance. Procedia Computer Science, 189, 108–115. https://doi.org/10.1016/j.procs.2021.05.074
Ratiasasadara, P. W., Sudarno, S., & Tarno, T. (2022). Analisis Sentimen Penerapan Ppkm Pada Twitter Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi-Square. Jurnal Gaussian, 11(4), 580–590. https://doi.org/10.14710/j.gauss.11.4.580-590
Rosyadi, A. C. N., Athoillah, M., & Fenny Fitriani. (2025). Analisis Sentimen Pengguna Twitter Mengenai Kotak Kosong Di Pilkada Indonesia Tahun 2024 Menggunakan Algoritma LSTM. Komputika : Jurnal Sistem Komputer, 14(2), 193–202. https://doi.org/10.34010/komputika.v14i2.16976
Saepudin, S., Widiastuti, S., & Irawan, C. (2023). Sentiment Analysis of Social Media Platform Reviews Using the Naïve Bayes Classifier Algorithm. Jurnal Sistem Informasi Dan Komputer, 12(2), 236–243. https://doi.org/10.32736/sisfokom.v12i2.1650
Sidabutar, G. V. (2023). TA : Analisis Sentimen Opini Publik Terhadap Pelayanan BPJS Kesehatan Menggunakan Metode Improved K-Nearest Neighbor - Repositori Universitas Dinamika. Dinamika.ac.id. https://repository.dinamika.ac.id/id/eprint/7362/1/18410100067-2023-UNIVERSITASDINAMIKA.pdf
Wijaya, R. H., Marthasari, G. I., & Sri, C. (2021). Perbandingan Feature Selection Chi-Square Dan Query Expansion Ranking (QER) Pada Analisis Sentimen Terkait Revitalisasi Monas Menggunakan Metode Naïve Bayes Classifier - UMM Institutional Repository. Umm.ac.id. https://eprints.umm.ac.id/id/eprint/5943/13/Wijaya%20Marthasari%20Aditya%20-%20Analisis%20Sentimen%20Na%C3%AFve%20Bayes%20Seleksi%20Fitur%20Python.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Heppy Nur Asavia Ginasputri, Atika Dwi Saputri, Siti Nurasriyanti Wahid, Ariska Fitriyana Ningrum, M Al Haris

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows:
PDF Download: 13
SIMILARITY INDEX Download: 0







