Analisis Sentimen Ulasan Pengguna BRImo Terhadap Pembaruan Fitur Aplikasi Menggunakan Naive Bayes Dengan Seleksi Fitur Chi-Square

Abstract View: 33, PDF Download: 13 SIMILARITY INDEX Download: 0

Authors

DOI:

https://doi.org/10.32665/statkom.v4i2.5194

Keywords:

Sentiment Analysis, BRImo, Naive Bayes, Chi-Square

Abstract

Background: The BRImo app is a mobile banking service from Bank Rakyat Indonesia (BRI) with a large number of users. User reviews on Google Play Store are an important source of data for understanding user perceptions and satisfaction levels, but the number and diversity of review texts require an appropriate sentiment analysis method.

Objective: This study aims to evaluate the performance of the Naive Bayes algorithm in classifying BRImo reviews by sentiment and the effect of Chi-Square feature selection.

Methods: The research method includes text data preprocessing consisting of cleaning, case folding, tokenizing, normalization, filtering, and stemming. Next, feature weighting is performed using TF-IDF and feature selection using the Chi-Square method, followed by sentiment classification using the Naive Bayes algorithm. Model evaluation is performed using a confusion matrix with accuracy, precision, recall, and F1-score metrics.

Results: The results show that the sentiment classification model achieved an accuracy of 95%, precision of 98%, recall of 96%, and an F1-score of 97%. The high recall value indicates the model's excellent ability to detect positive sentiment in user reviews.

Conclusion: The Naive Bayes algorithm with Chi-Square feature selection is effective in analyzing BRImo application review sentiment and can be used as a basis for evaluating application development, but its performance is still limited in detecting negative sentiment due to the quantity of sentiment data.

References

Andriani, N., & Wibowo, A. (2021). Implementasi Text Mining Klasifikasi Topik Tugas Akhir Mahasiswa Teknik Informatika Menggunakan Pembobotan TF-IDF dan Metode Cosine Similarity Berbasis Web. Senamika, September, 130–137. https://conference.upnvj.ac.id/index.php/senamika/article/view/1807%0Ahttp

Anisah, S., Honggowibowo, A. S., & Pujiastuti, A. (2016). Klasifikasi Teks Menggunakan Chi Square Feature Selection Untuk Menentukan Komik Berdasarkan Periode, Materi Dan Fisikdengan Algoritma Naïve Bayes. Compiler, 5(2). https://doi.org/10.28989/compiler.v5i2.171

Arifat, M., Putri, W. A., & Mufida, A. S. (2023). Penerapan Metode Naive Bayes Classifier Untuk Klasifikasi Indeks Pembangunan Manusia Di Provinsi Jawa Timur. Jurnal Statistika Dan Komputasi, 2(1), 31–43. https://doi.org/10.32665/statkom.v2i1.1661

Arminda, N. F., Sulistiyowati, N., & Padilah, T.N. (2023). Implementasi Algoritma Multinomial Naive Bayes Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Brimo. JATI, 7(3), 1817–1822. https://doi.org/10.36040/jati.v7i3.7012

Chen, H., Hu, S., Hua, R., & Zhao, X. (2021). Improved naive Bayes classification algorithm for traffic risk management. EURASIP Journal on Advances in Signal Processing, 2021(1). https://doi.org/10.1186/s13634-021-00742-6

Elysa, N. S., Arini, L., Murad, D. F., & Leandros, R. (2023). User Experience Satisfaction Analysis of Customers on the BRI Mobile Application (BRImo). Procedia Computer Science, 227, 680–689. https://doi.org/10.1016/j.procs.2023.10.572

Ernayanti, T., Mustafid, M., Rusgiyono, A., & Hakim, A. R. (2022). Penggunaan Seleksi Fitur Chi-Square Dan Algoritma Multinomial Naïve Bayes Untuk Analisis Sentimen Pelangggan Tokopedia. Jurnal Gaussian, 11(4), 562–571. https://doi.org/10.14710/j.gauss.11.4.562-571

Farissa, R. A., Mayasari, R., & Umaidah, Y. (2021). Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung. Journal of Applied Informatics and Computing, 5(2), 109–116. https://doi.org/10.30871/jaic.v5i1.3237

Gautam, P. K., & Waoo, A. A. (2024). Improved Hybrid Feature Selection Approach for Sentiment Classification : Integrating Chi-Square and Recursive Feature Elimination. Frontiers in Health Informatics. 13(3), 10570–10582. https://healthinformaticsjournal.com/index.php/IJMI/article/view/1008

Habiba, A., Isnanto, R. R., & Suseno, J. E. (2023). The Effect of Chi Square Feature Selection on the Naïve Bayes Algorithm on the Analysis of Indonesian Society’s Sentiment About Face-to-Face Learning During the Covid-19 Pandemic. JST (Jurnal Sains Dan Teknologi), 12(1), 190-199. https://doi.org/10.23887/jstundiksha.v12i1.51899

Insan, M. K. K., Hayati, U., & Nurdiawan, O. (2023). Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di

Google Play Menggunakan Algoritma Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 478–483. https://doi.org/10.36040/jati.v7i1.6373

Paembonan, S., & Abduh, H. (2021). Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 6(2), 48. https://doi.org/10.51557/pt_jiit.v6i2.659

Permana, I. S., Halim, C., Nenti, N.S., & Riza, N. (2022). Analisis Kinerja Keuangan Dengan Menggunakan Rasio Likuiditas, Solvabilitas Dan Profitabilitas Pada PT. Bank BNI (Persero), TBK. Jurnal Aktiva Riset Akuntansi Dan Keuangan, 4(1), 32–43. https://doi.org/10.52005/aktiva.v4i1.150

Prastyo, P. H., Ardiyanto, I., & Hidayat, R. (2021). A Combination of Query Expansion Ranking and GA-SVM for Improving Indonesian Sentiment Classification Performance. Procedia Computer Science, 189, 108–115. https://doi.org/10.1016/j.procs.2021.05.074

Ratiasasadara, P. W., Sudarno, S., & Tarno, T. (2022). Analisis Sentimen Penerapan Ppkm Pada Twitter Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi-Square. Jurnal Gaussian, 11(4), 580–590. https://doi.org/10.14710/j.gauss.11.4.580-590

Rosyadi, A. C. N., Athoillah, M., & Fenny Fitriani. (2025). Analisis Sentimen Pengguna Twitter Mengenai Kotak Kosong Di Pilkada Indonesia Tahun 2024 Menggunakan Algoritma LSTM. Komputika : Jurnal Sistem Komputer, 14(2), 193–202. https://doi.org/10.34010/komputika.v14i2.16976

Saepudin, S., Widiastuti, S., & Irawan, C. (2023). Sentiment Analysis of Social Media Platform Reviews Using the Naïve Bayes Classifier Algorithm. Jurnal Sistem Informasi Dan Komputer, 12(2), 236–243. https://doi.org/10.32736/sisfokom.v12i2.1650

Sidabutar, G. V. (2023). TA : Analisis Sentimen Opini Publik Terhadap Pelayanan BPJS Kesehatan Menggunakan Metode Improved K-Nearest Neighbor - Repositori Universitas Dinamika. Dinamika.ac.id. https://repository.dinamika.ac.id/id/eprint/7362/1/18410100067-2023-UNIVERSITASDINAMIKA.pdf

Wijaya, R. H., Marthasari, G. I., & Sri, C. (2021). Perbandingan Feature Selection Chi-Square Dan Query Expansion Ranking (QER) Pada Analisis Sentimen Terkait Revitalisasi Monas Menggunakan Metode Naïve Bayes Classifier - UMM Institutional Repository. Umm.ac.id. https://eprints.umm.ac.id/id/eprint/5943/13/Wijaya%20Marthasari%20Aditya%20-%20Analisis%20Sentimen%20Na%C3%AFve%20Bayes%20Seleksi%20Fitur%20Python.pdf

Published

2025-12-31
Abstract View: 33, PDF Download: 13 SIMILARITY INDEX Download: 0