Pengelompokan Kabupaten/Kota Di Jawa Barat Berdasarkan Indikator Ketenagakerjaan Menggunakan Metode K-Means Dan Fuzzy C-Means Dengan Evaluasi Rasio SW/SB Sebagai Validasi Klaster

Abstract View: 38, PDF Download: 19 SIMILARITY INDEX Download: 0

Authors

DOI:

https://doi.org/10.32665/statkom.v4i2.5196

Keywords:

Employment, West Java, Clustering, K-Means, Fuzzy C-Means

Abstract

Background: The high dynamics of the labor market in Indonesia make employment one of the main challenges of sustainable development. Changes in economic structure, an increase in the workforce, and regional disparities in employment opportunities require adaptive strategies. This condition is particularly evident in densely populated areas with diverse economic sectors, such as West Java Province.

Objective: This study aims to group 27 districts/cities in West Java Province based on five employment indicators, namely TPAK, TPT, the number of workers in micro and small businesses, the average monthly net income of informal workers according to education, and the percentage of employment in the workforce by comparing the K-Means and Fuzzy C-Means methods.

Methods: This study uses two clustering methods, namely K-Means and Fuzzy C-Means. The best method is selected by comparing the SW and SB values.

Results: The results indicate that the K-Means method is the best method, as seen from the smaller Sw/Sb ratio of 0.076, compared to Fuzzy C-Means, which is 0.153.

Conclusion: The results of the K-Means method clustering show that the districts/cities in West Java are divided into 7 clusters, namely cluster 1 with 3 regions, cluster 2 with 8 regions, clusters 3 and 4 with 1 region, cluster 5 with 4 regions, cluster 6 with 3 regions, and cluster 7 with 7 regions. These results can serve as a basis for determining the priority of regional employment interventions.

References

Badan Pusat Statistik Provinsi Jawa Barat. (2024a). Tingkat Partisipasi Angkatan Kerja Menurut Kabupaten/Kota (Persen), 2021-2023. Retrieved on [10 April 2025]. https://jabar.bps.go.id/id/statistics-table/2/ODkjMg==/tingkat-partisipasi-angkatan-kerja-menurut-kabupaten-kota.html

Badan Pusat Statistik Provinsi Jawa Barat. (2024b). Tingkat Pengangguran Terbuka Menurut Kabupaten/Kota (%), 2021-2023. Retrieved on [10 April 2025]. https://jabar.bps.go.id/id/statistics-table/2/NzMjMg==/tingkat-pengangguran-terbuka-kabupaten-kota.html

Cebeci, Z., & Yildiz, F. (2015). Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures. Journal of Agricultural Informatics, 6(3), 13–23. https://doi.org/10.17700/jai.2015.6.3.196

Chong, B. (2021). K-means clustering algorithm: a brief review. Academic Journal of Computing & Information Science, 4(5), 37–40. https://doi.org/10.25236/ajcis.2021.040506

Disdukcapil. (2023). Buku Profil Perkembangan Kependudukan Provinsi Jawa Barat. https://disdukcapil.jabarprov.go.id/profil-kependudukan

Firdaus, H. S., Nugraha, A. L., Sasmito, B., & Awaluddin, M. (2021). Perbandingan Metode Fuzzy C-Means Dan K-Means Untuk Pemetaan Daerah Rawan Kriminalitas Di Kota Semarang. Elipsoida : Jurnal Geodesi Dan Geomatika, 4(01), 58–64. https://doi.org/10.14710/elipsoida.2021.9219

Fuadah, N. A., Nafisah, Z. A., & Wulandari, S. P. (2024). Pengelompokkan Kabupaten/Kota di Provinsi Jawa Timur berdasarkan Indikator Ketenagakerjaan. Ebisnis Manajemen, 2(4), 37–50. https://doi.org/10.59603/ebisman.v2i4.589

Hanniva, H., Kurnia, A., Rahardiantoro, S., & Mattjik, A. A. (2022). Penggerombolan Kabupaten/Kota di Indonesia Berdasarkan Indikator Indeks Pembangunan Manusia Menggunakan Metode K-Means dan Fuzzy C-Means. Xplore: Journal of Statistics, 11(1), 36–47. https://journal-stats.ipb.ac.id/index.php/xplore/article/view/855

Karnoto, K., & Suryati, T. F. (2024). Analisis Perubahan Penimbang Dalam Estimasi Indikator Ketenagakerjaan Di Sulawesi Barat : Kasus Transisi Dari Supas 2015 Ke Lf Sp2020. Jurnal Ekonomi Ichsan Sidenreng Rappang, 3(1), 300–311. https://doi.org/10.61912/jeinsa.v3i1.39

Khan, A. S. S., Fatekurohman, M., & Dewi, Y. S. (2023). Perbandingan Algoritma K-Medoids Dan K-Means Dalam Pengelompokan Kecamatan Berdasarkan Produksi Padi Dan Palawija Di Jember. Jurnal Statistika Dan Komputasi, 2(2), 67–75. https://doi.org/10.32665/statkom.v2i2.2301

Noya van Delsen, M. S., Wattimena, A. Z., & Saputri, S. (2017). Penggunaan Metode Analisis Komponen Utama Untuk Mereduksi Faktor-Faktor Inflasi Di Kota Ambon. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 11(2), 109–118. https://doi.org/10.30598/barekengvol11iss2pp109-118

Oktaviandi, B., Mukhti, T. O., Kurniawati, Y., & Martha, Z. (2024). Implementation of the Fuzzy C-Means Clustering Method in Grouping Provinces in Indonesia based on the Types of Goods Sold in E-commerce Businesses in 2022. UNP Journal of Statistics and Data Science, 2(3), 360–365. https://doi.org/10.24036/ujsds/vol2-iss3/210

Pattipeilohy, R. L., & Pakereng, M. A. I. (2023). Penerapan K-Means Clustering Pada Data Mahasiswa Fakultas Interdisiplin Program Studi D4 Destinasi Pariwisata Untuk Menentukan Strategi Promosi. Jurnal Sains Komputer & Informatika (J-SAKTI, 7(1), 320–331. https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/595

Pradipta, I. M. D., Eka, A., Wahyudi, A., & Aryani, S. (2018). Fuzzy C-Means Clustering for Customer Segmentation. International Journal of Engineering and Emerging Technology, 3(1), 18–22. https://ojs.unud.ac.id/index.php/ijeet/article/view/41251/25103

Saepudin, T., & Nurfala, S. (2022). Analisis Indikator Ketenagakerjaan dan Demografi terhadap Kemiskinan di Jawa Barat. Jurnal Riset Ilmu Ekonomi, 2(2), 69–78. https://doi.org/10.23969/jrie.v2i2.30

Safitri, E. M. (2024). Clustering Study Of Hospitals In Bojonegoro Based On Health Workers With K-Means And K-Medoids Methods. Jurnal Statistika Dan Komputasi, 3(2), 92–102. https://doi.org/10.32665/statkom.v3i2.3592

Sebriana, E. I., & Hasanah, S. H. (2025). Analisis Indikator Ketenagakerjaan di Jawa Timur Tahun 2023 dengan Pendekatan Clustering. Prosiding Seminar Nasional Sains Dan Teknologi Seri III, 2(1), 1056–1068. https://conference.ut.ac.id/index.php/saintek/article/view/5158

Sudarsono, B. G., Leo, M. I., Santoso, A., & Hendrawan, F. (2021). Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner. JBASE - Journal of Business and Audit Information Systems, 4(1), 13–21. https://doi.org/10.30813/jbase.v4i1.2729

Yudhistiraa, A., Aldino, A. A., & Darwis, D. (2022). Analisis Klasterisasi Penilaian Kinerja Pegawai Menggunakan Metode Fuzzy C-Means (Studi Kasus : Pengadilan Tinggi Agama bandar lampung). Jurnal Ilmiah Edutic : Pendidikan Dan Informatika, 9(1), 77–82. https://doi.org/10.21107/edutic.v9i1.17134

Published

2025-12-31
Abstract View: 38, PDF Download: 19 SIMILARITY INDEX Download: 0

Most read articles by the same author(s)