Peramalan Harga Beras Mingguan di Kalimantan Timur Menggunakan Metode Singular Spectrum Analysis

Abstract View: 20, PDF Download: 20 SIMILARITY INDEX Download: 0

Authors

  • Deswita Istiyanti Universitas Mulawarman
  • Erlyne Nadhilah Widyaningrum Mulawarman University https://orcid.org/0009-0007-4940-569X
  • Mitha Rabiyatul Nufus Politeknik Pertanian Negeri Kupang
  • Chandrawati Chandrawati Universitas Hamzanwadi

DOI:

https://doi.org/10.32665/statkom.v4i2.5662

Keywords:

Singular Spectrum Analysis, Forecasting, Rice Price, MAPE

Abstract

Background: Rice plays a central role in Indonesia's food security and inflation dynamics, making accurate price forecasts crucial for effective planning policies. In East Kalimantan, weekly rice prices represent a significant risk factor that needs to be closely monitored to anticipate potential risks to household welfare and regional inflation.

Objective: To predict rice prices in East Kalimantan over the next eight periods using the SSA method.

Methods: Singular Spectrum Analysis (SSA) to predict weekly rice prices. The SSA procedure includes embedding (window length L = 48), singular value decomposition, eigentriple clustering (trend: 1–2; seasonality: 3–35; disturbance: 36–48), diagonal averaging, and R-forecasting using the Linear Recursive Formula (LRF).

Results: MAPE of 0.084% (in-sample) and 3.299% (out-sample). Estimates indicate that rice prices will remain in the range of IDR 15,500–16,500/kg during August–October 2025.

Conclusion: The SSA is effective in capturing basic price components and producing reliable forecasts to support food reserve maintenance, distribution strategies, and inflation risk mitigation.

References

Adhiguna, K., & Pujiyanta, A. (2014). Aplikasi Bantu untuk Menentukan Nilai Eigen dan Vektor Eigen Berbasis Multimedia. Jurnal Sarjana Teknik Informatika, 2(1). 91-100. https://journal.uad.ac.id/index.php/JSTIF/article/view/2606

Amri, I. F., Supriadin, S., Haris, M. A., Ninu, M. F., Chumairoh, K. C., Purnama, G. S., & Nur Rohim, F. H. (2025). Prediksi Harga Beras Di Pasar Grosir Indonesia Menggunakan Metode Triple Exponential Smoothing Holt-Winters. Jurnal Gaussian, 14(1), 31-41. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/47101

Basari, M. S. N., & Achmad, A. I. (2021). Metode Singular Spectrum Analysis untuk Meramalkan Indeks Harga Konsumen Indonesia Tahun 2019. Prosiding Statistika, 7, 484–491.

Deli, T., Kartikasari, P., & Utami, I. T. (2024). Implementasi Metode Singular Spectrum Analysis (SSA) Pada Peramalan Indeks LQ45. Jurnal Gaussian, 13(1), 210-218. https://doi.org/10.14710/j.gauss.13.1.210-218

Gapari, M. (2021). Pengaruh Kenaikan Harga Beras terhadap Kesejahteraan Petani di Desa Sukaraja. PENSA, 3(1), 14-26. https://ejournal.stitpn.ac.id/index.php/pensa/article/view/1115

Golyandina, N., Vladimir Nekrutkin, & Anatoly Zhigljavsky. (2001). Analysis of Time Series Structure. In Chapman and Hall/CRC eBooks. Informa. https://doi.org/10.1201/9781420035841

Handayani, T. D., Imang, N., & Mariyah, M. (2025). Analisis Pengaruh Harga Bahan Pokok Penting Terhadap Inflasi di Kota Samarinda (Studi Kasus: Toko Siap Jaga Harga dan Pasokan Pasar Segiri). Agricore Jurnal Agribisnis Dan Sosial Ekonomi Pertanian Unpad, 10(1). https://doi.org/10.24198/agricore.v10i1.62091

Hassani, H., & Zhigljavsky, A. (2009). Singular spectrum analysis: methodology and application to economics data. Journal of Systems Science and Complexity, 22(3), 372–394. https://doi.org/10.1007/s11424-009-9171-9

Hidayat, K. W., Wahyuningsih, S., & Nasution, Y. N. (2020). Pemodelan Jumlah Titik Panas Di Provinsi Kalimantan Timur Dengan Metode Singular Spectrum Analysis. Jambura Journal of Probability and Statistics, 1(2), 78–88. https://doi.org/10.34312/jjps.v1i2.7287

Idrus, R. A., Ruliana, R., & Aswi, A. (2022). Penerapan Metode Singular Spectrum Analysis dalam Peramalan Jumlah Produksi Beras di Kabupaten Gowa . VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(2), 49-58. https://jurnalvariansi.unm.ac.id/index.php/variansi/article/view/40

Ilmi, N., Aswi, A., & Aidid, M.K. (2023). Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA) dalam Peramalan Data Curah Hujan di Kota Makassar. Inferensi, 6(1), 25–25. https://doi.org/10.12962/j27213862.v6i1.14347

Ningsih, E. L., Nurmayanti, W. P., Widyaningrum, E. N., & Pangruruk, T. A. (2024). Optimalisasi Peramalan Total Aset PT. BPD Kaltim Kaltara dengan Double Exponential Smoothing Brown. Jurnal Statistika Dan Komputasi, 3(2), 72–79. https://doi.org/10.32665/statkom.v3i2.3525

Purnama, E. (2022). Aplikasi Metode Singular Spectrum Analysis (SSA) Pada Peramalan Curah Hujan Di Provinsi Gorontalo. Jambura Journal of Probability and Statistics, 3(2), 161–170. https://ejurnal.ung.ac.id/index.php/jps/article/view/16537

Ramadan, L. M. A. H., Alim, N., & Tahrir, M. (2023). Analisis Ketahanan Pangan Beras Provinsi Kalimantan Timur Tahun 2023-2032. Nusantara Innovation Journal, 1(2), 34–46. https://doi.org/10.70260/nij.v1i2.20

Ruhiat, D., Andiani, D., & Kamilah, W. N. (2020). Forecasting Data Runtun Waktu Musiman Menggunakan Metode Singular Spectrum Analysis (SSA). Teorema: Teori Dan Riset Matematika, 5(1), 47–60. http://dx.doi.org/10.25157/teorema.v5i1.3286

Sakinah, A. M. (2019). Akurasi Peramalan Long Horizon dengan Singular Spectrum Analysis. KUBIK: Jurnal Publikasi Ilmiah Matematika, 3(2), 93–99. https://doi.org/10.15575/kubik.v3i2.4111

Sauddin, A., & Kaimuddin, A. (2022). Proyeksi Produksi Padi Kabupaten Pinrang Dengan Metode Singular Spectrum Analysis. Jurnal MSA (Matematika Dan Statistika Serta Aplikasinya), 10(1), 100–109.

Sergio, A., Wahyuningsih, S., & Siringoringo, M. (2023). Peramalan Inflasi Kota Balikpapan Menggunakan Metode Singular Spectrum Analysis. EKSPONENSIAL, 14(1), 21–30. https://doi.org/10.30872/eksponensial.v14i1.1098

Wicaksono, A., Helmi, H., & Yundari, Y. (2019). Prediksi Outflow Uang Kartal Di Kalimantan Barat Dengan Metode Singular Spectrum Analysis (SSA). Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(3). https://doi.org/10.26418/bbimst.v8i3.33903

Zhigljavsky, A. (2025). Singular Spectrum Analysis for Time Series. International Encyclopedia of Statistical Science, 2348–2350. https://doi.org/10.1007/978-3-662-69359-9_572

Published

2025-12-31
Abstract View: 20, PDF Download: 20 SIMILARITY INDEX Download: 0

Most read articles by the same author(s)