On Local Vertex Antimagic Total Coloring Of Path, Cycle, And Star Graphs With Comb Operation

Abstract View: 9, PDF Download: 0

Authors

  • Taradita Ayitia Meisya Fendina Universitas Mulawarman
  • Desi Febriani Putri Universitas Mulawarman
  • Wasono Universitas Mulawarman
  • Maria Alensia Deltin Dala Universitas Mulawarman

DOI:

https://doi.org/10.32665/james.v8i2.4777

Keywords:

Chromatic Number, Cycle Graph, Local Vertex Antimagic Total, Path Graph, Star Graph

Abstract

Let G(V,E) be a graph consisting of a set of vertices V(G) and a set of edges E(G) where the number of vertices and edges are denoted by |V(G)| and |E(G)|, respectively. A bijective function f:V(G) \vee E(G) \to {1,2,3,...,(|V(G)|+|E(G)|)} is defined as a local vertex antimagic total coloring if there exist two adjacent vertex vx and vy with . Therefore, every local vertex antimagic total coloring produces a vertex coloring of the graph G, where each vertex v is assigned a color corresponding to its weight w(v). This research is essential as it contributes to development of graph coloring theory, particularly in the area of local vertex antimagic total coloring, which has been rarely studied. This research discusses the local vertex antimagic total coloring of and  which aims to determine the chromatic number. The result of the research is the chromatic number of local vertex antimagic total coloring of  and the chromatic number of local vertex antimagic total coloring , is if  is odd and  if  is even.

References

Agustin, I. H., Hasan, M., Dafik, Alfarisi, R., & Prihandini, R. M. (2017). Local edge antimagic coloring of graphs. Far East Journal of Mathematical Sciences. https://doi.org/10.17654/MS102091925

Arumugam, S., Premalatha, K., Bača, M., & Semaničová-Feňovčíková, A. (2017). Local Antimagic Vertex Coloring of a Graph. Graphs and Combinatorics, 33(2), 275–285. https://doi.org/10.1007/s00373-017-1758-7

Aziz, T. A. (2021). Eksplorasi Justifikasi dan Rasionalisasi Mahasiswa dalam Konsep Teori Graf. Jurnal Pendidikan Matematika Raflesia, 06(02), 40–54. https://ejournal.unib.ac.id/index.php/jpmr

Daniel, F., & Taneo, P. N. L. (2019). Teori Graf. Deepublish.

Fransiskus Fran, A. H. (2019). Pewarnaan Simpul, Sisi, Wilayah Pada Graf Dan Penerapannya. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(4), 773–782. https://doi.org/10.26418/bbimst.v8i4.36037

Ginting, J., & Banjarnahor, H. (2010). Graf Petersen dengan Beberapa Sifat yang Berkaitan dalam Teori Graf. Karismatika: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika Dan Aplikasi, 2(1), 29–36.

Himayati, A. I. A., Alfiana, K., Putra, M. A. J. D., & Utami, R. (2020). Aplikasi Pewarnaan Graf dengan Metode Welch Powell pada Pembuatan Jadwal Ujian Proposal Skripsi Program Studi Farmasi Universitas Muhammadiyah Kudus. Jurnal Ilmu Komputer Dan Matematika, 1(1), 32–39. https://ejr.stikesmuhkudus.ac.id/index.php/jikoma/article/view/974

Kurniawati, E. Y., Agustin, I. H., Dafik, & Alfarisi, R. (2018). Super locadge antimagic total coloring of Pn ▹h. Journal of Physics: Conference Series, 1008(1). https://doi.org/10.1088/1742-6596/1008/1/012036

Lau, G. C., Schaffer, K., and Shiu, W. C. (2023). Every Graph is Local Antimagic Total and Its Applications. Opuscula Math. 43, no. 6, 841-864. https://doi.org/10.7494/OpMath.2023.43.6.841

Maftukhah, U., Amiroch, S., & Pradana, M. S. (2020). Implementasi Algoritma Greedy Pada Pewarnaan Wilayah Kecamatan Sukodadi Lamongan. Unisda Journal of Mathematics and Computer Science (UJMC). https://doi.org/10.52166/ujmc.v6i2.2391

Magic graphs. (2001). Springer Science & Business Media.

Majid, C. A., Wijayanti, D. E., Thobirin, A., & Prasetyo, P. W. (2023). Pelabelan Jarak Tak Teratur Titik Pada Graf Persahabatan Lengkap Diperumum. Limits: Journal of Mathematics and Its Applications, 20(1), 11. https://doi.org/10.12962/limits.v20i1.7917

Munir, R. (2010). Matematika Disktrit. Informatika Bandung, 281–308.

Nasir, A. M., Faisal, & Dedy Setyawan. (2022). Optimalisasi Penjadwalan Mata Kuliah Menggunakan Teori Pewarnaan Graf. Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 5(1), 57–69. https://doi.org/10.30605/proximal.v5i1.1398

Pawar, R. and Singh, T. (2023). Super Total Local Antimagic Vertex Coloring of Graphs. Arxiv Math https://doi.org/10.48550/arXiv.2303.14019

Pawar, R., Singh, T., and Bagga, J. (2025). Super Total Local Antimagic Coloring of Graphs. Bulletin of The ICA, Vol. 103, 82 – 113.

Prasetyo, D. A. B. (2012). Vertex antimagic total labeling pada graph multicycle. 7(1).

Putri, M. R. (2016). Digital Digital Repository Repository Universitas Universitas Jember Jember Digital Digital Repository Repository Universitas Universitas Jember Jember.

Putri, D.F., Dafik, Agustin, I. H., Alfarisi, R. (2018). On The Local Antimagic Total Coloring of Some Families Tree. Journal of Physics: Conference Series, 1008 012035. doi :10.1088/1742-6596/1008/1/012035

Downloads

Published

2025-10-31

How to Cite

[1]
Taradita Ayitia Meisya Fendina, Desi Febriani Putri, Wasono, and Maria Alensia Deltin Dala, “On Local Vertex Antimagic Total Coloring Of Path, Cycle, And Star Graphs With Comb Operation”, JaMES, vol. 8, no. 2, pp. 216–227, Oct. 2025.
Abstract View: 9, PDF Download: 0