Machine Learning-Based Early Prediction of Kidney Failure: A Comparative Study of Artificial Neural Network and Random Forest Models

Abstract View: 49, PDF Download: 23

Authors

  • Nur Mahmudah Universitas Nahdlatul Ulama Sunan Giri
  • Alif Yuanita Kartini Universitas Nahdlatul Ulama Sunan Giri
  • Muhammad Anshori Universitas Nahdlatul Ulama Sunan Giri

DOI:

https://doi.org/10.32665/james.v8i2.5598

Keywords:

Artificial Neural Network, Kidney Failure, Machine Learning, Prediction, Random Forest

Abstract

Chronic kidney disease (CKD) is a progressive condition with an increasing incidence rate in Indonesia, including in Bojonegoro Regency. This disease results from a gradual decline in kidney function, leading to the accumulation of metabolic waste and toxins in the body. Early detection is crucial to prevent complications and enhance treatment effectiveness. However, current diagnostic methods rely heavily on laboratory tests and medical anamnesis, which may not provide sufficient accuracy. This study aims to develop a predictive model for kidney failure using Artificial Neural Network (ANN) and Random Forest (RF) algorithms. The ANN is particularly effective in recognizing complex nonlinear patterns, while RF demonstrates robustness in classification tasks. The results show that the ANN model achieved an accuracy of 81%, with blood urea nitrogen (BUN), blood pressure, creatinine, and diabetes identified as dominant predictors. Meanwhile, the RF model achieved an accuracy of 80%, with blood pressure emerging as the most influential variable. Based on comparative performance, ANN was selected as the optimal model for the kidney failure prediction. Nonetheless, integrating both algorithms into a hybrid framework could further enhance predictive coverage and support early detection and clinical decision-making in kidney failure management.

References

Almansour, N. A., Syed, H. F., Khayat, N. R., Altheeb, R. K., Juri, R. E., Alhiyafi, J., Alrashed, S., & Olatunji, S. O. (2019). Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Computers in Biology and Medicine, 109(April), 101–111. https://doi.org/10.1016/j.compbiomed.2019.04.017

Amalia, H. (2018). Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis. Maret, 14(1), 1.

Ardiantito, W. S., Ramadhan, R. A., Steven Immanuel, R. S., William Iskandar Ps, J. V, Baru, K., Percut Sei Tuan, K., Deli Serdang, K., Utara, S., & penulis, K. (2023). Komparasi Algoritma Machine Learning dalam Memprediksi Penyakit Gagal Ginjal * Wahyu Ardiantito S. Jurnal Penelitian Dan Karya Ilmiah, 1(Desember), 363–374.

Arifin, T., & Ariesta, D. (2019). Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization. Jurnal Tekno Insentif, 13(1), 26–30. https://doi.org/10.36787/jti.v13i1.97

Barua, T., Hiran, K. K., Jain, R. K., & Doshi, R. (2024). Machine Learning with Python. In Machine Learning with Python. https://doi.org/10.1515/9783110697186

Billsus, D., & Pazzani, M. J. (1999). A hybrid user model for news story classification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 407, 99–108. https://doi.org/10.1007/978-3-7091-2490-1_10

Boyang, C., Yuexing, L., Yiping, Y., Haiyang, Y., Xufei, Z., Liancheng, G., & Yunzhi, C. (2022). Construction and analysis of heart failure diagnosis model based on random forest and artificial neural network. Medicine (United States), 101(41), E31097. https://doi.org/10.1097/MD.0000000000031097

Budiani, J. R., & Mahmudah, N. (2025). Comparison of Supervised Machine Learning Algorithms in Heart Failure Disease. Barekeng, 19(4), 2739–2750. https://doi.org/10.30598/barekengvol19iss4pp2739-2750

Cahyani, N., & Kartini, A. Y. (2022). DLNN dan BPNN-GA Pada Prediksi Penyakit Diabetes di Bojonegoro. Journal of Mathematics Education and Science, 6(1), 1–9. https://doi.org/10.32665/james.v6i1.416

Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., Jasinski, M., Jasinski, L., Gono, R., Jasinska, E., & Bolshev, V. (2021). Prediction of Chronic Kidney Disease - A Machine Learning Perspective. IEEE Access, 9, 17312–17334. https://doi.org/10.1109/ACCESS.2021.3053763

Colin Campbell, Y. Y. (2011). Learning with Support Vector Machines (Synthesis Lectures on Artificial Intelligence and Machine Learning) (p. 96).

Darwanto, A. R. S., Taza Luzia Viarindita, & Yekti Widyaningsih. (2021). Analisis Regresi Logistik Binomial dan Algoritma Random Forest pada Proses Pengklasifikasian Penyakit Ginjal Kronis. Jurnal Statistika Dan Aplikasinya, 5(1), 1–14. https://doi.org/10.21009/JSA.05101

Dörpinghaus, J., Düing, C., & Stefan, A. (2022). Biomedical Knowledge Graphs: Context, Queries and Complexity. In Studies in Big Data (Vol. 112, pp. 529–567). https://doi.org/10.1007/978-3-031-08411-9_20

Han, X., Zheng, X., Wang, Y., Sun, X., Xiao, Y., Tang, Y., & Qin, W. (2019). Random forest can accurately predict the development of end-stage renal disease in immunoglobulin a nephropathy patients. Annals of Translational Medicine, 7(11), 234–234. https://doi.org/10.21037/atm.2018.12.11

Hartono, A., Aska Dewi, L., Yuniarti, E., Tahta Hirani Putri, S., Surya Harahap, T., & Hartono, A. (2023). Machine Learning Classification for Detecting Heart Disease with K-NN Algorithm, Decision Tree and Random Forest. Eksakta : Berkala Ilmiah Bidang MIPA, 24(04), 513–522.

Khamidah, F. S. N., Hapsari, D. P., & Nugroho, H. (2018). Implementasi Fuzzy Decision Tree Untuk Prediksi Gagal Ginjal Kronis. INTEGER: Journal of Information Technology, 3(1), 19–28. https://doi.org/10.31284/j.integer.2018.v3i1.155

Paper, D. (2013). R Consistent data analysis. R Package, 53.

Poonia, R. C., Gupta, M. K., Abunadi, I., Albraikan, A. A., Al-Wesabi, F. N., Hamza, M. A., & Tulasi, B. (2022). Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease. Healthcare (Switzerland), 10(2). https://doi.org/10.3390/healthcare10020371

Rahimi, M., Akbari, A., Asadi, F., & Emami, H. (2023). Cervical cancer survival prediction by machine learning algorithms: a systematic review. BMC Cancer, 23(1), 1–10. https://doi.org/10.1186/s12885-023-10808-3

Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., & Khovanova, N. (2019). Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomedical Signal Processing and Control, 52, 456–462. https://doi.org/10.1016/j.bspc.2017.01.012

Shen, J., Li, J., Mao, Z., & Zhang, Y. (2023). First-principle study on the stability of Cd passivates in soil. Scientific Reports, 13(1), 1–8. https://doi.org/10.1038/s41598-023-31460-8

Singh, V., Asari, V. K., & Rajasekaran, R. (2022). A Deep Neural Network for Early Detection and Prediction of Chronic Kidney Disease. Diagnostics, 12(1), 1–22. https://doi.org/10.3390/diagnostics12010116

Wijayanti, R. A., Furqon, M. T., & Adinugroho, S. (2018). Penerapan Algoritme Support Vector Machine Terhadap Klasifikasi Tingkat Risiko Pasien Gagal Ginjal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Koputer, 2(10), 3500–3507.

Yaqin, A. A., Barata, M. A., & Mahmudah, N. (2025). Implementation of the Random Forest Algorithm with Optuna Optimization in Lung Cancer Classification. 14, 561–569.

Downloads

Published

2025-10-27

How to Cite

[1]
Nur Mahmudah, Alif Yuanita Kartini, and Muhammad Anshori, “Machine Learning-Based Early Prediction of Kidney Failure: A Comparative Study of Artificial Neural Network and Random Forest Models”, JaMES, vol. 8, no. 2, pp. 202–215, Oct. 2025.
Abstract View: 49, PDF Download: 23