Machine Learning-Based Early Prediction of Kidney Failure: A Comparative Study of Artificial Neural Network and Random Forest Models
PDF Download: 23
DOI:
https://doi.org/10.32665/james.v8i2.5598Keywords:
Artificial Neural Network, Kidney Failure, Machine Learning, Prediction, Random ForestAbstract
Chronic kidney disease (CKD) is a progressive condition with an increasing incidence rate in Indonesia, including in Bojonegoro Regency. This disease results from a gradual decline in kidney function, leading to the accumulation of metabolic waste and toxins in the body. Early detection is crucial to prevent complications and enhance treatment effectiveness. However, current diagnostic methods rely heavily on laboratory tests and medical anamnesis, which may not provide sufficient accuracy. This study aims to develop a predictive model for kidney failure using Artificial Neural Network (ANN) and Random Forest (RF) algorithms. The ANN is particularly effective in recognizing complex nonlinear patterns, while RF demonstrates robustness in classification tasks. The results show that the ANN model achieved an accuracy of 81%, with blood urea nitrogen (BUN), blood pressure, creatinine, and diabetes identified as dominant predictors. Meanwhile, the RF model achieved an accuracy of 80%, with blood pressure emerging as the most influential variable. Based on comparative performance, ANN was selected as the optimal model for the kidney failure prediction. Nonetheless, integrating both algorithms into a hybrid framework could further enhance predictive coverage and support early detection and clinical decision-making in kidney failure management.References
Almansour, N. A., Syed, H. F., Khayat, N. R., Altheeb, R. K., Juri, R. E., Alhiyafi, J., Alrashed, S., & Olatunji, S. O. (2019). Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Computers in Biology and Medicine, 109(April), 101–111. https://doi.org/10.1016/j.compbiomed.2019.04.017
Amalia, H. (2018). Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis. Maret, 14(1), 1.
Ardiantito, W. S., Ramadhan, R. A., Steven Immanuel, R. S., William Iskandar Ps, J. V, Baru, K., Percut Sei Tuan, K., Deli Serdang, K., Utara, S., & penulis, K. (2023). Komparasi Algoritma Machine Learning dalam Memprediksi Penyakit Gagal Ginjal * Wahyu Ardiantito S. Jurnal Penelitian Dan Karya Ilmiah, 1(Desember), 363–374.
Arifin, T., & Ariesta, D. (2019). Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization. Jurnal Tekno Insentif, 13(1), 26–30. https://doi.org/10.36787/jti.v13i1.97
Barua, T., Hiran, K. K., Jain, R. K., & Doshi, R. (2024). Machine Learning with Python. In Machine Learning with Python. https://doi.org/10.1515/9783110697186
Billsus, D., & Pazzani, M. J. (1999). A hybrid user model for news story classification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 407, 99–108. https://doi.org/10.1007/978-3-7091-2490-1_10
Boyang, C., Yuexing, L., Yiping, Y., Haiyang, Y., Xufei, Z., Liancheng, G., & Yunzhi, C. (2022). Construction and analysis of heart failure diagnosis model based on random forest and artificial neural network. Medicine (United States), 101(41), E31097. https://doi.org/10.1097/MD.0000000000031097
Budiani, J. R., & Mahmudah, N. (2025). Comparison of Supervised Machine Learning Algorithms in Heart Failure Disease. Barekeng, 19(4), 2739–2750. https://doi.org/10.30598/barekengvol19iss4pp2739-2750
Cahyani, N., & Kartini, A. Y. (2022). DLNN dan BPNN-GA Pada Prediksi Penyakit Diabetes di Bojonegoro. Journal of Mathematics Education and Science, 6(1), 1–9. https://doi.org/10.32665/james.v6i1.416
Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., Jasinski, M., Jasinski, L., Gono, R., Jasinska, E., & Bolshev, V. (2021). Prediction of Chronic Kidney Disease - A Machine Learning Perspective. IEEE Access, 9, 17312–17334. https://doi.org/10.1109/ACCESS.2021.3053763
Colin Campbell, Y. Y. (2011). Learning with Support Vector Machines (Synthesis Lectures on Artificial Intelligence and Machine Learning) (p. 96).
Darwanto, A. R. S., Taza Luzia Viarindita, & Yekti Widyaningsih. (2021). Analisis Regresi Logistik Binomial dan Algoritma Random Forest pada Proses Pengklasifikasian Penyakit Ginjal Kronis. Jurnal Statistika Dan Aplikasinya, 5(1), 1–14. https://doi.org/10.21009/JSA.05101
Dörpinghaus, J., Düing, C., & Stefan, A. (2022). Biomedical Knowledge Graphs: Context, Queries and Complexity. In Studies in Big Data (Vol. 112, pp. 529–567). https://doi.org/10.1007/978-3-031-08411-9_20
Han, X., Zheng, X., Wang, Y., Sun, X., Xiao, Y., Tang, Y., & Qin, W. (2019). Random forest can accurately predict the development of end-stage renal disease in immunoglobulin a nephropathy patients. Annals of Translational Medicine, 7(11), 234–234. https://doi.org/10.21037/atm.2018.12.11
Hartono, A., Aska Dewi, L., Yuniarti, E., Tahta Hirani Putri, S., Surya Harahap, T., & Hartono, A. (2023). Machine Learning Classification for Detecting Heart Disease with K-NN Algorithm, Decision Tree and Random Forest. Eksakta : Berkala Ilmiah Bidang MIPA, 24(04), 513–522.
Khamidah, F. S. N., Hapsari, D. P., & Nugroho, H. (2018). Implementasi Fuzzy Decision Tree Untuk Prediksi Gagal Ginjal Kronis. INTEGER: Journal of Information Technology, 3(1), 19–28. https://doi.org/10.31284/j.integer.2018.v3i1.155
Paper, D. (2013). R Consistent data analysis. R Package, 53.
Poonia, R. C., Gupta, M. K., Abunadi, I., Albraikan, A. A., Al-Wesabi, F. N., Hamza, M. A., & Tulasi, B. (2022). Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease. Healthcare (Switzerland), 10(2). https://doi.org/10.3390/healthcare10020371
Rahimi, M., Akbari, A., Asadi, F., & Emami, H. (2023). Cervical cancer survival prediction by machine learning algorithms: a systematic review. BMC Cancer, 23(1), 1–10. https://doi.org/10.1186/s12885-023-10808-3
Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., & Khovanova, N. (2019). Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomedical Signal Processing and Control, 52, 456–462. https://doi.org/10.1016/j.bspc.2017.01.012
Shen, J., Li, J., Mao, Z., & Zhang, Y. (2023). First-principle study on the stability of Cd passivates in soil. Scientific Reports, 13(1), 1–8. https://doi.org/10.1038/s41598-023-31460-8
Singh, V., Asari, V. K., & Rajasekaran, R. (2022). A Deep Neural Network for Early Detection and Prediction of Chronic Kidney Disease. Diagnostics, 12(1), 1–22. https://doi.org/10.3390/diagnostics12010116
Wijayanti, R. A., Furqon, M. T., & Adinugroho, S. (2018). Penerapan Algoritme Support Vector Machine Terhadap Klasifikasi Tingkat Risiko Pasien Gagal Ginjal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Koputer, 2(10), 3500–3507.
Yaqin, A. A., Barata, M. A., & Mahmudah, N. (2025). Implementation of the Random Forest Algorithm with Optuna Optimization in Lung Cancer Classification. 14, 561–569.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Mathematics Education and Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
PDF Download: 23












