Pelabelan Total Sisi Trimagic Super Pada Graf Calendula

Abstract View: 114, PDF Download: 88

Authors

  • Wulandari Wulandari Universitas Mulawarman
  • Hardina Sandariria Universitas Mulawarman
  • Wasono Wasono Universitas Mulawarman

DOI:

https://doi.org/10.32665/james.v7i1.1934

Keywords:

Pelabelan sisi trimagic, Pelabelan total sisi trimagic, Pelabelan total sisi trimagic super, Graf calendula, edge trimagic labeling, edge trimagic total labeling, super edge trimagic total labling, calendula graph

Abstract

Graf G(V(G),E(G)) dikatakan mempunyai pelabelan total sisi trimagic bila terdapat pemetaan bijektif f:V(G) ∪ E(G) → {1,2,⋯,|V(G)|+|E(G)|}, sehingga untuk setiap sisi uv ∈ E(G), ketika f(u)+f(uv)+f(v) merupakan tiga nilai konstanta berbeda yaitu k_1,k_2, dan k_3. Pelabelan total sisi trimagic disebut sebagai pelabelan total sisi trimagic super pada suatu graf G jika titik diberi label himpunan bilangan {1,2,⋯,|V(G)|}. Dalam penelitian ini, ditentukan pelabelan total sisi trimagic super pada graf Calendula Cl_(p,q), dengan p≥3 dan q=4,5. Berdasarkan hasil penelitian, diperoleh graf Calendula Cl_(p,q) memuat pelabelan total sisi trimagic super.

References

Buhaerah, Z. Busrah, and H. Sanjaya, Teori Graf dan Aplikasinya. 2019.

J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

G. M. Imelda and T. S. Martini, “Pelabelan Total Sisi Trimagic Super pada Graf Bunga CmSn,” Prism. Pros. Semin. Nas. Mat., vol. 5, no. Pelabelan Total, pp. 834–841, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

K. Rosen, K., and Krithivasan, “Discrete mathematics and its applications: with combinatorics and graph theory.,” Tata McGraw-Hill Educ., 2012.

J. Sadlack, “Theory of Graphs and Its Applications,” House Czechoslov. Acad. Sci. Prague, pp. 163–164, 1964.

A. Kotzig and A. Rosa, “Magic Valuations of Finite Graphs,” Can. Math. Bull., vol. 13, no. 4, pp. 451–461, 1970, doi: 10.4153/cmb-1970-084-1.

H. Sandariria and Y. Susanti, “H-Supermagic Labeling on Coronation of Some Classes of Graphs with a Path,” Phys.: Conf. Ser. 855 012042. 2017, doi: 10.1088/1742-6596/855/1/012042.

H. Sandariria and Y. Susanti, “H -supermagic labeling on edge coronation of some graphs with a cycle,” AIP Conf. Proc., vol. 2192, no. December, 2019, doi: 10.1063/1.5139140.

J. B. Babujee, “Bimagic labeling in path graphs,” Math. Educ., vol. 38, p. 5, 2004.

J. B. B. Mohammed Ali Ahmed, “On Face Bimagic Labeling of Graphs,” Indian J. Sci. Technol., vol. 4, no. 4, pp. 414–416, 2016, doi: 10.17485/ijst/2011/v4i4/30012.

C. Jayasekaran and M. Regees, “Edge trimagic total labeling of graphs,” vol. 3, no. 1, pp. 295–320, 2013.

C. Jayasekaran and J. Little Flower, “On Edge Trimagic Labeling of Umbrella, Dumb Bell and Circular Ladder Graphs,” Ann. Pure Appl. Math., vol. 13, no. 1, pp. 73–87, 2017, doi: 10.22457/apam.v13n1a8.

T. Nawawi, A., and Martini, “Pelabelan Total Sisi Trimagic pada Graf Dragon Pendant DPn(m),” Pros. Semin. Nas. Mat., vol. 4, p. 46, 2022.

M. Leto, “Pelabelan H-Ajaib Super Pada Graf Generalized Calendula,” Kupang Fak. Sains dan Tek. Univ. Cendan, vol. 33, no. 1, pp. 1–12, 2022.

N. Pradipta, T., dan Ishaq, “nalisis Pelabelan Lingkaran-Ajaib Super Pada Graf Hasil Kali Sisir Dari Dua Lingkaran,” Univ. Muhammadiyah Prof. Dr. Hamka, vol. 6, no. 1, pp. 1–8, 2018.

Downloads

Published

2024-04-29

How to Cite

[1]
W. Wulandari, H. Sandariria, and W. Wasono, “Pelabelan Total Sisi Trimagic Super Pada Graf Calendula”, JaMES, vol. 7, no. 1, pp. 59–63, Apr. 2024.
Abstract View: 114, PDF Download: 88